Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 27(24): 15248-54, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22073925

RESUMO

A simple chemical route for the exfoliation of kaolinite in the presence of polymerizable ionic liquids and the resulting obtainment of exfoliated nanocomposites is reported. The exfoliation was achieved using three different ionic liquids structurally bearing a vinyl group: 1-methyl-3-(4-vinylbenzyl)imidazolium chloride salt (IL_1), 1-methyl-1-(4-vinylbenzyl)pyrrolidinium chloride (IL_2), and 1-methyl-3-vinyl imidazolium iodide (IL_3) and a urea-kaolinite intercalate as precursor. The reaction was done in one step by an in situ polymerization-exfoliation process. (13)C CP/MAS NMR spectra confirmed the spontaneous polymerization of the ionic liquid during the exfoliation process to afford atactic polystyrene derivatives in the case of IL_1 and IL_2. The amount of organic material in the exfoliated nanocomposite was close to 30% as shown by thermal gravimetric analysis. This amount is small in comparison to the amount obtained when the exfoliation was done using sodium polyacrylate (Letaief and Detellier, Langmuir2009, 25, 10975). XRD as well as SEM analysis confirmed a total exfoliation of the kaolinite when the reaction was done using urea kaolinite, whereas a microcomposite, made predominantly of kaolinite platelet aggregates dispersed in the polymeric matrix, was formed when dimethylsulfoxide kaolinite was used as the precursor.

2.
Chem Commun (Camb) ; (25): 2613-5, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17579755

RESUMO

New robust functionalized nanohybrid materials were prepared by the interlayer covalent attachment of aminoalcohols to the octahedral sheets of kaolinite.

3.
J Colloid Interface Sci ; 302(1): 254-8, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16837006

RESUMO

This paper reports a new route for the intercalation of an ionic liquid, namely 1-ethyl pyridinium chloride, into the interlamellar spaces of kaolinite. The intercalation was achieved using a kaolinite-urea intercalate as a starting material. The results of the XRD, FTIR, and TGA analyses confirmed the intercalation of ethyl pyridinium in the interlamellar spaces of kaolinite. 13C CP/MAS spectra indicated the complete displacement of urea by ethyl pyridinium. 29Si and 27Al NMR spectra of the starting materials and the products are also discussed as well as the results of the elemental analysis of the produced nanohybrid material.

4.
Chem Commun (Camb) ; (24): 2996-7, 2003 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-14703825

RESUMO

A new class of porous nanocomposite materials have been prepared by reaction of alkoxysilanes with alkylammonium-exchanged phyllosilicates (clay minerals), using a sol-gel procedure which produces the complete delamination of these layered solids.


Assuntos
Nanotecnologia , Dióxido de Silício/química , Géis , Teste de Materiais , Difração de Raios X
5.
J Colloid Interface Sci ; 343(2): 622-7, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20060540

RESUMO

Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions.

6.
Langmuir ; 25(18): 10975-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518083

RESUMO

A chemical route for the delamination of kaolinite in a polymeric matrix is reported in this work. The strategy that was used is based on mixing polyelectrolytes of opposite charges, an organic polyanion, polyacrylate, with an inorganic polycation resulting from the modification of the internal surfaces of kaolinite. The delamination was carried out by the reaction of sodium polyacrylate (PANa) with kaolinite whose internal aluminol surfaces were previously grafted with triethanolamine and subsequently quaternized with iodomethane (TOIM-K) to form an extended lamellar inorganic polycation. X-ray diffraction as well as scanning electron microscopy (SEM) confirmed the complete delamination of the kaolinite particles. 13C CP/MAS NMR showed the removal of the ammonium groups resulting from hydrolysis of the internal surfaces once exposed, and 29Si CP/MAS NMR spectra were in agreement with the retention of the 1:1 aluminosilicate kaolinite layers structures. From the thermogravimetry (TG) data, the respective percentages in mass of PA and kaolinite in the delaminated nanocomposite could be estimated to be 61% and 39%, respectively, in the conditions of the particular experiment. The procedure was repeated several times to show the reproducibility of the delamination. The interlayer functionalization of kaolinite was crucial for the success of the delamination procedure. SEM pictures show that some individual kaolinite platelets fold and form curved structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA