Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232687

RESUMO

Salinity tolerance-associated phenotypes of 35 EMS mutagenized wheat lines originating from BARI Gom-25 were compared. Vegetative growth was measured using non-destructive image-based phenotyping. Five different NaCl concentrations (0 to 160 mM) were applied to plants 19 days after planting (DAP 19), and plants were imaged daily until DAP 38. Plant growth, water use, leaf Na+, K+ and Cl- content, and thousand kernel weight (TKW) were measured, and six lines were selected for further analysis. In saline conditions, leaf Na+, K+, and Cl- content variation on a dry weight basis within these six lines were ~9.3, 1.4, and 2.4-fold, respectively. Relative to BARI Gom-25, two (OA6, OA62) lines had greater K+ accumulation, three (OA6, OA10, OA62) had 50-75% lower Na+:K+ ratios, and OA62 had ~30% greater water-use index (WUI). OA23 had ~2.2-fold greater leaf Na+ and maintained TKW relative to BARI Gom-25. Two lines (OA25, OA52) had greater TKW than BARI Gom-25 when grown in 120 mM NaCl but similar Na+:K+, WUI, and biomass accumulation. OA6 had relatively high TKW, high leaf K+, and WUI, and low leaf Na+ and Cl-. Phenotypic variation revealed differing associations between the parameters measured in the lines. Future identification of the genetic basis of these differences, and crossing of lines with phenotypes of interest, is expected to enable the assessment of which combinations of parameters deliver the greatest improvement in salinity tolerance.


Assuntos
Tolerância ao Sal , Triticum , Íons , Folhas de Planta/genética , Salinidade , Tolerância ao Sal/genética , Sódio , Cloreto de Sódio/farmacologia , Triticum/genética , Água
2.
BMC Plant Biol ; 20(1): 18, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931695

RESUMO

BACKGROUND: Triticum aestivum (wheat) is one of the world's oldest crops and has been used for >8000 years as a food crop in North Africa, West Asia and Europe. Today, wheat is one of the most important sources of grain for humans, and is cultivated on greater areas of land than any other crop. As the human population increases and soil salinity becomes more prevalent, there is increased pressure on wheat breeders to develop salt-tolerant varieties in order to meet growing demands for yield and grain quality. Here we developed a mutant wheat population using the moderately salt-tolerant Bangladeshi variety BARI Gom-25, with the primary goal of further increasing salt tolerance. RESULTS: After titrating the optimal ethyl methanesulfonate (EMS) concentration, ca 30,000 seeds were treated with 1% EMS, and 1676 lines, all originating from single seeds, survived through the first four generations. Most mutagenized lines showed a similar phenotype to BARI Gom-25, although visual differences such as dwarfing, giant plants, early and late flowering and altered leaf morphology were seen in some lines. By developing an assay for salt tolerance, and by screening the mutagenized population, we identified 70 lines exhibiting increased salt tolerance. The selected lines typically showed a 70% germination rate on filter paper soaked in 200 mM NaCl, compared to 0-30% for BARI Gom-25. From two of the salt-tolerant OlsAro lines (OA42 and OA70), genomic DNA was sequenced to 15x times coverage. A comparative analysis against the BARI Gom-25 genomic sequence identified a total of 683,201 (OA42), and 768,954 (OA70) SNPs distributed throughout the three sub-genomes (A, B and D). The mutation frequency was determined to be approximately one per 20,000 bp. All the 70 selected salt-tolerant lines were tested for root growth in the laboratory, and under saline field conditions in Bangladesh. The results showed that all the lines selected for tolerance showed a better salt tolerance phenotype than both BARI Gom-25 and other local wheat varieties tested. CONCLUSION: The mutant wheat population developed here will be a valuable resource in the development of novel salt-tolerant varieties for the benefit of saline farming.


Assuntos
Produtos Agrícolas/genética , Tolerância ao Sal/genética , Triticum/genética , Bangladesh , Metanossulfonato de Etila , Mutagênese/genética , Mutagênicos , Taxa de Mutação , Fenótipo
3.
Cells ; 12(10)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37408265

RESUMO

Large and rapidly increasing areas of salt-affected soils are posing major challenges for the agricultural sector. Most fields used for the important food crop Triticum aestivum (wheat) are expected to be salt-affected within 50 years. To counter the associated problems, it is essential to understand the molecular mechanisms involved in salt stress responses and tolerance, thereby enabling their exploitation in the development of salt-tolerant varieties. The myeloblastosis (MYB) family of transcription factors are key regulators of responses to both biotic and abiotic stress, including salt stress. Thus, we used the Chinese spring wheat genome assembled by the International Wheat Genome Sequencing Consortium to identify putative MYB proteins (719 in total). Protein families (PFAM) analysis of the MYB sequences identified 28 combinations of 16 domains in the encoded proteins. The most common consisted of MYB_DNA-binding and MYB-DNA-bind_6 domains, and five highly conserved tryptophans were located in the aligned MYB protein sequence. Interestingly, we found and characterized a novel 5R-MYB group in the wheat genome. In silico studies showed that MYB transcription factors MYB3, MYB4, MYB13 and MYB59 are involved in salt stress responses. qPCR analysis confirmed upregulation of the expression of all these MYBs in both roots and shoots of the wheat variety BARI Gom-25 (except MYB4, which was downregulated in roots) under salt stress. Moreover, we identified nine target genes involved in salt stress that are regulated by the four MYB proteins, most of which have cellular locations and are involved in catalytic and binding activities associated with various cellular and metabolic processes.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Estresse Salino/genética , Estresse Fisiológico/genética
4.
Comput Biol Chem ; 83: 107131, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586723

RESUMO

Soil salinization is an increasing global threat to economically important agricultural crops such as bread wheat (Triticum aestivum L.). A main regulator of plants' responses to salt stress is WRKY transcription factors, a protein family that binds to DNA and alters the rate of transcription for specific genes. In this study, we identified 297 WRKY genes in the Chinese Spring wheat genome (Ensembl Plants International Wheat Genome Sequencing Consortium (IWGSC)), of which 126 were identified as putative. We classified 297 WRKY genes into three Groups: I, II (a-e) and III based on phylogenetic analysis. Principal component analysis (PCA) of WRKY proteins using physicochemical properties resulted in a very similar clustering as that observed through phylogenetic analysis. The 5` upstream regions (-2 000 bp) of 107 891 sequences from the wheat genome were used to predict WRKY transcription factor binding sites, and from this we identified 31 296 genes with putative WRKY binding motifs using the Find Individual Motif Occurrences (FIMO) tool. Among these predicted genes, 47 genes were expressed during salt stress according to a literature survey. Thus, we provide insight into the structure and diversity of WRKY domains in wheat and a foundation for future studies of DNA-binding specificity and for analysis of the transcriptional regulation of plants' response to different stressors, such as salt stress, as addressed in this study.


Assuntos
Simulação por Computador , Regulação da Expressão Gênica de Plantas/genética , Genômica , Estresse Salino/genética , Fatores de Transcrição/genética , Triticum/genética , Sítios de Ligação , Filogenia , Análise de Componente Principal
5.
Methods Mol Biol ; 1829: 55-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987714

RESUMO

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.


Assuntos
Embriófitas/fisiologia , Plastídeos/fisiologia , Cloroplastos/genética , Cloroplastos/metabolismo , Embriófitas/ultraestrutura , Fenômenos Fisiológicos Vegetais , Plastídeos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA