Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 167(2): 695-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837111

RESUMO

Geminiviruses are plant-infecting, circular single-stranded DNA viruses that have a geminate virion morphology. These viruses infect both cultivated and non-cultivated monocotyledonous and dicotyledonous plants and have a wide geographical distribution. Nine genera had been established within the family Geminiviridae (Becurtovirus, Begomovirus, Capulavirus, Curtovirus, Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus, and Turncurtovirus) as of 2020. In the last decade, metagenomics approaches have facilitated the discovery and identification of many novel viruses, among them numerous highly divergent geminiviruses. Here, we report the establishment of five new genera in the family Geminiviridae (Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus) to formally classify twelve new, divergent geminiviruses.


Assuntos
Begomovirus , Geminiviridae , Geminiviridae/genética , Doenças das Plantas , Plantas , Vírion
2.
Arch Virol ; 167(11): 2355-2357, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35857149

RESUMO

We report the complete genome sequence of a novel member of the genus Vitivirus (family Betaflexiviridae, subfamily Trivirinae) infecting pineapple. The complete genome sequence of this virus was obtained from total RNA extracted from pineapple leaf samples collected in Reunion Island, using a combination of high-throughput sequencing technologies. The viral genome is 6,757 nt long, excluding the poly(A) tail, and shares all the hallmarks of vitiviruses. Phylogenetic analysis performed on the replication-associated protein and capsid protein gene sequences unambiguously place this new virus, for which we propose the name "pineapple virus A", in the genus Vitivirus.


Assuntos
Ananas , Flexiviridae , Proteínas do Capsídeo/genética , Flexiviridae/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA , RNA Mensageiro , RNA Viral/genética , Reunião
3.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35722889

RESUMO

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ácidos Nucleicos , Vírus de Plantas , Metagenômica/métodos , Ecossistema , Doenças das Plantas , Vírus de Plantas/genética , Vírion/genética , Plantas
4.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34919512

RESUMO

The family Geminiviridae includes viruses with mono- or bipartite single-stranded, circular DNA genomes of 2.5-5.2 kb. They cause economically important diseases in most tropical and subtropical regions of the world. Geminiviruses infect dicot and monocot plants and are transmitted by insect vectors. DNA satellites are associated with some geminiviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Geminiviridae which is available at ictv.global/report/geminiviridae.


Assuntos
Geminiviridae/classificação , Doenças das Plantas/virologia , Animais , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Viral/química , DNA Viral/genética , Geminiviridae/genética , Geminiviridae/fisiologia , Geminiviridae/ultraestrutura , Ordem dos Genes , Insetos/virologia , Vírion/química , Vírion/genética , Vírion/ultraestrutura , Replicação Viral
5.
Arch Virol ; 166(3): 955-959, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33502595

RESUMO

Maize streak disease (MSD) is one of the most significant biotic constraints on the production of Africa's most important cereal crop. Until recently, the only virus known to cause severe MSD was the A-strain of maize streak virus (MSV/A), a member of the genus Mastrevirus, family Geminiviridae. However, over the past decade, two other mastreviruses, MSV/C and maize streak Réunion virus (MSRV), have been repeatedly found in the absence of MSV/A in maize plants displaying severe MSD symptoms. Here, we report on infectious clones of MSV/C and MSRV and test their ability to cause severe MSD symptoms. Although cloned MSV/C and MSRV genomes could cause systemic symptomatic infections in MSD-sensitive maize genotypes, these infections yielded substantially milder symptoms than those observed in the field. The MSV/C and MSRV isolates that we have examined are therefore unlikely to cause severe MSD on their own. Furthermore, mixed infections of MSRV and MSV/C with other mild MSV strains also consistently yielded mild MSD symptoms. It is noteworthy that MSRV produces distinctive striate symptoms in maize that are similar in pattern, albeit not in severity, to those seen in the field, showing that this virus may contribute to the severe MSD symptoms seen in the field. Therefore, despite not fulfilling Koch's postulates for MSV/C and MSRV as causal agents of severe MSD, we cannot exclude the possibility that these viruses could be contributing to currently emerging maize diseases.


Assuntos
Vírus do Listrado do Milho/patogenicidade , Doenças das Plantas/virologia , Zea mays/virologia , DNA Viral/genética , Genoma Viral/genética , Genótipo , Vírus do Listrado do Milho/genética , Vírus do Listrado do Milho/isolamento & purificação , Filogenia , Análise de Sequência de DNA
6.
Arch Virol ; 166(6): 1755-1758, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743049

RESUMO

In this report, we present the first description of the complete genome sequences of a new monopartite begomovirus isolated from tomato with symptoms of interveinal yellowing of leaves collected in the region of Worodougou in the northwest of Côte d'Ivoire and provisionally named "tomato interveinal yellowing virus" (ToIYV). The DNA-A-like nucleotide sequences of ToIYV share the highest nucleotide sequence identity (83%) with tobacco leaf curl Zimbabwe virus (ToLCZWV). Phylogenetic analysis confirmed that ToIYV is related to Old World monopartite begomoviruses. The discovery of a member of a new virus species on diseased tomato plants confirms the high genetic diversity in monopartite begomoviruses in West Africa and stresses the importance of maintaining epidemiological crop surveillance.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Côte d'Ivoire , DNA Viral/genética , Filogenia
7.
Arch Virol ; 166(12): 3503-3511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34550466

RESUMO

Alphasatellites (family Alphasatellitidae) are circular, single-stranded DNA molecules (~1-1.4 kb) that encode a replication-associated protein and have commonly been associated with some members of the families Geminiviridae, Nanoviridae, and Metaxyviridae (recently established). Here, we provide a taxonomy update for the family Alphasatellitidae following the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021. The taxonomic update includes the establishment of the new subfamily Petromoalphasatellitinae. This new subfamily includes three new genera as well as the genus Babusatellite, which previously belonged to the subfamily Nanoalphasatellitinae. Additionally, three new genera and 14 new species have been established in the subfamily Geminialphasatellitinae, as well as five new species in the subfamily Nanoalphasatellitinae.


Assuntos
Geminiviridae , Vírus , DNA de Cadeia Simples , Geminiviridae/genética , Genoma Viral , Humanos , Vírus/genética
8.
Arch Virol ; 165(8): 1887-1889, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447622

RESUMO

This is the first description of the complete genome sequence of a new monopartite begomovirus isolated from tomato with symptoms of tomato (yellow) leaf curl disease collected in northwestern Namibia, which we provisionally name "tomato leaf curl Kunene virus". The DNA-A-like nucleotide sequence shares the highest nucleotide sequence identity (82.8%) with tobacco leaf curl Zimbabwe virus (ToLCZWV). Phylogenetic analysis confirmed its affiliation with Old World monopartite begomoviruses. The discovery of a new begomovirus in a vegetable plant in Namibia highlights the importance of maintaining epidemiological surveillance in southern Africa.


Assuntos
Begomovirus/genética , Solanum lycopersicum/virologia , Sequência de Bases/genética , DNA Viral/genética , Genoma Viral/genética , Namíbia , Filogenia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos
9.
Arch Virol ; 165(8): 1925-1928, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506147

RESUMO

Nine complete nucleotide sequences of geminialphasatellites (subfamily Geminialphasatellitinae, family Alphasatellitidae) recovered from the wild Poaceae Sorghum arundinaceum collected in Reunion are described and analyzed. While the helper geminivirus was identified as an isolate of maize streak virus (genus Mastrevirus, family Geminiviridae), the geminialphasatellite genomes were most closely related to, and shared ~63% identity with, clecrusatellites. Even though the geminialphasatellite molecules lack an adenine rich-region, they have the typical size of geminialphasatellites, encode a replication-associated protein in the virion sense, and have probable stem-loop structures at their virion-strand origins of replication. According to the proposed geminialphasatellite species and genus demarcation thresholds (88% and 70% nucleotide identity, respectively), the genomes identified here represent a new species (within a new genus) for which we propose the name "Sorghum mastrevirus-associated alphasatellite" (genus "Sorgasalphasatellite").


Assuntos
Geminiviridae/genética , Vírus do Listrado do Milho/genética , Poaceae/virologia , Sorghum/virologia , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , Reunião , Análise de Sequência de DNA/métodos , Zea mays/virologia
10.
Arch Virol ; 164(8): 2193-2196, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123961

RESUMO

Using high-throughput sequencing of small interfering RNAs (siRNAs), virion-associated nucleic acid (VANA), and double stranded RNAs (dsRNAs), we have determined the complete genome sequences of Comorian isolates of two ipomoviruses, cassava brown streak virus (CBSV) and a divergent isolate of Ugandan cassava brown streak virus (UCBSV-KM) representing a new strain of this virus. While the large ORF of CBSV shares the highest nucleotide sequence identity (95.9%) with a Tanzanian isolate of CBSV, the large UCBSV-KM ORF shares the highest nucleotide sequence identity (77.5%) with a Malawian isolate of UCBSV. This low value is near the species demarcation threshold for the family Potyviridae (<76%). Phylogenetic analysis confirms that UCBSV-KM represents a new lineage that is genetically distinct from the currently described UCBSV strains.


Assuntos
Potyviridae/genética , Sequência de Bases/genética , Comores , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Manihot/virologia , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA/métodos
11.
Arch Virol ; 163(12): 3451-3453, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30178119

RESUMO

This is the first description of the complete genome sequence of a new monopartite begomovirus isolated from tomato with symptoms of tomato (yellow) leaf curl disease collected in the Seychelles. The DNA-A-like nucleotide sequences share the highest nucleotide sequence identity (84%) with tomato leaf curl Anjouan virus (ToLCAnjV) from the Comoros islands. Phylogenetic analysis confirmed its recombinant nature and its relationship to Old World monopartite and bipartite begomoviruses. This discovery of a new member of a species confirms the high genetic diversity of begomoviruses in the south-western Indian Ocean islands.


Assuntos
Begomovirus/isolamento & purificação , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/classificação , Begomovirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Seicheles
12.
Arch Virol ; 163(9): 2587-2600, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29740680

RESUMO

Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.


Assuntos
Geminiviridae/isolamento & purificação , Nanovirus/isolamento & purificação , Vírus Satélites/isolamento & purificação , Animais , Cocos/virologia , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral , Hemípteros/virologia , Musa/virologia , Nanovirus/classificação , Nanovirus/genética , Odonatos/virologia , Filogenia , Doenças das Plantas/virologia , Vírus Satélites/classificação , Vírus Satélites/genética
13.
Virol J ; 14(1): 146, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754134

RESUMO

BACKGROUND: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses. METHODS: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3. RESULTS: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion. CONCLUSIONS: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.


Assuntos
Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Saccharum/virologia , Clonagem Molecular , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , DNA Viral/isolamento & purificação , Florida , Guadalupe , Filogenia , Reunião , Análise de Sequência de DNA , Homologia de Sequência , Sequenciamento Completo do Genoma
14.
Arch Virol ; 162(6): 1791-1794, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28229228

RESUMO

This is the first description of full genome sequences of chickpea chlorotic dwarf virus (CpCDV; genus Mastrevirus; family Geminiviridae) identified in papaya and tomato plants sampled in Burkina Faso. The CpCDV full genome sequences from papaya and tomato share the highest pairwise sequence identity (84% and 93.5%) with Sudanese isolates of the CpCDV-K and CpCDV-M strains, respectively. Based on the strain demarcation threshold (>94% identity) for mastreviruses, we propose two new strains, CpCDV-Q and CpCDV-R, identified in papaya and tomato, respectively. Phylogenetic analysis confirmed that the sequences belong to a distinct clade of the highly diverse population of CpCDVs. Evidence of inter-strain recombination provided more support for the important role of recombination in CpCDV evolution. The discovery of CpCDV on papaya, a previously unsuspected host, raises many questions about the natural and potential host range of this dicot-infecting mastrevirus species that is reported to be emerging worldwide.


Assuntos
Carica/virologia , Cicer/virologia , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Bases , Burkina Faso , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , RNA Viral/genética
15.
Arch Virol ; 162(5): 1427-1429, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161765

RESUMO

In this report, we present the first description of the complete genome sequence of a new monopartite begomovirus isolated from tomatoes collected in Burkina Faso and presenting with symptoms of tomato leaf curl disease. We propose the tentative name "tomato leaf curl Burkina Faso virus'' (ToLCBFV). DNA-A-like nucleotide sequence of ToLCBFV shares the highest nucleotide sequence identity (85%) with the pepper yellow vein Mali virus (PepYVMLV). Phylogenetic analysis confirmed the affiliation of ToLCBFV to Old World monopartite begomoviruses. This discovery of a new species confirms the existence of high genetic diversity in monopartite begomoviruses in sub-Saharan Africa and particularly in West Africa.


Assuntos
Begomovirus/classificação , Begomovirus/genética , DNA Viral/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Begomovirus/isolamento & purificação , Burkina Faso , Proteínas do Capsídeo/genética , Fases de Leitura Aberta/genética , Análise de Sequência de DNA
16.
BMC Evol Biol ; 16: 182, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600545

RESUMO

BACKGROUND: Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 279 DNA-A and 117 DNA-B sequences revealed the presence in Madagascar of four prevalent CMG species (South African cassava mosaic virus, SACMV; African cassava mosaic virus, ACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV), and of numerous CMG recombinants that have, to date, only ever been detected on this island. SACMV and ACMV, the two most prevalent viruses, displayed low degrees of genetic diversity and have most likely been introduced to the island only once. By contrast, EACMV-like CMG populations (consisting of East African cassava mosaic virus, EAMCKV, EACMCV and complex recombinants of these) were more diverse, more spatially structured, and displayed evidence of at least three independent introductions from mainland Africa. Although there were no statistically supported virus movement events between Madagascar and the other SWIO islands, at least one mainland African ACMV variant likely originated in Madagascar. CONCLUSIONS: Our study highlights both the complexity of CMD in Madagascar, and the distinct evolutionary and spatial dynamics of the different viral species that collectively are associated with this disease. Given that more distinct CMG species and recombinants have been found in Madagascar than any other similarly sized region of the world, the risks of recombinant CMG variants emerging on this island are likely to be higher than elsewhere. Evidence of an epidemiological link between Madagascan and mainland African CMGs suggests that the consequences of such emergence events could reach far beyond the shores of this island.


Assuntos
Begomovirus/genética , Evolução Biológica , Manihot/virologia , Teorema de Bayes , DNA Viral/genética , Variação Genética , Madagáscar , Filogeografia , Doenças das Plantas/virologia , Recombinação Genética
17.
J Virol ; 88(4): 1972-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284329

RESUMO

Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.


Assuntos
Adaptação Biológica/genética , Pareamento de Bases/genética , Vírus de DNA/genética , DNA de Cadeia Simples/genética , Variação Genética , Genoma Viral/genética , Seleção Genética , Sequência de Bases , Biologia Computacional , Sequência Conservada , Evolução Molecular , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie
18.
Arch Virol ; 160(6): 1589-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900620

RESUMO

Here, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.9 % (DNA-B) with a recently described bipartite begomovirus infecting Asystasia sp. in West Africa. Phylogenetic analysis demonstrated that this novel virus from Madagascar belongs to a new lineage of Old World bipartite begomoviruses.


Assuntos
Acanthaceae/virologia , Begomovirus/genética , Doenças das Plantas/virologia , Sequência de Bases , Madagáscar/epidemiologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
19.
Arch Virol ; 160(11): 2887-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26255054

RESUMO

This is the first description of the complete genome sequence of a new bipartite begomovirus isolated from tomato (Solanum lycopersicum) in French Guiana, for which we propose the tentative name "tomato chlorotic mottle Guyane virus" (ToCMoGFV). DNA-A and -B nucleotide sequences of ToCMoGFV are only distantly related to known New World begomoviruses. They share the highest nucleotide sequence identity of 80% with the Brazilian isolates of macroptilium yellow spot virus (MacYSV) and 73% with soybean chlorotic spot virus (SBCSV). Phylogenetic analysis demonstrated that this novel virus belongs to a new lineage of New World bipartite begomoviruses. The discovery of this new virus confirms the high genetic diversity of begomoviruses in Latin America.


Assuntos
Begomovirus/isolamento & purificação , Begomovirus/fisiologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/genética , Guiana Francesa , Genoma Viral , Dados de Sequência Molecular , Filogenia
20.
Proc Biol Sci ; 281(1781): 20133374, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24598426

RESUMO

Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens. During a 7-year field survey, we observed a displacement of the resident TYLCV-Mld by the newcomer TYLCV-IL, with TYLCV-Mld remaining mostly in co-infected plants. To understand the factors associated with this partial displacement, biological traits related to fitness were measured. The better ecological aptitude of TYLCV-IL in single infections was demonstrated, which explains its rapid spread. However, we demonstrate that the relative fitness of virus strains can drastically change between single infections and co-infections. An epidemiological model parametrized with our experimental data predicts that the two strains will coexist in the long run through assistance by the fitter strain. This rare case of unilateral facilitation between two pathogens leads to frequency-dependent selection and maintenance of the less fit strain.


Assuntos
Begomovirus/fisiologia , Doenças Transmissíveis Emergentes/virologia , Espécies Introduzidas , Interações Microbianas/fisiologia , Solanum lycopersicum/virologia , Animais , Begomovirus/genética , Hemípteros/virologia , Insetos Vetores/virologia , Modelos Biológicos , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Reunião , Seleção Genética , Especificidade da Espécie , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA