Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 10(13): 6310-6332, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724515

RESUMO

During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo-mock community (33 arthropod taxa from 16 orders), and guano-based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano-based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one-third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.

2.
Ecol Evol ; 9(21): 12272-12290, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832159

RESUMO

The greater horseshoe bat (Rhinolophus ferrumequinum) is among the most widespread bat species in Europe but it has experienced severe declines, especially in Northern Europe. This species is listed Near Threatened in the European IUCN Red List of Threatened Animals, and it is considered to be highly sensitive to human activities and particularly to habitat fragmentation. Therefore, understanding the population boundaries and demographic history of populations of this species is of primary importance to assess relevant conservation strategies. In this study, we used 17 microsatellite markers to assess the genetic diversity, the genetic structure, and the demographic history of R. ferrumequinum colonies in the western part of its distribution. We identified one large population showing high levels of genetic diversity and large population size. Lower estimates were found in England and northern France. Analyses of clustering and isolation by distance suggested that the Channel and the Mediterranean seas could impede R. ferrumequinum gene flow. These results provide important information to improve the delineation of R. ferrumequinum management units. We suggest that a large management unit corresponding to the population ranging from Spanish Basque Country to northern France must be considered. Particular attention should be given to mating territories as they seem to play a key role in maintaining high levels of genetic mixing between colonies. Smaller management units corresponding to English and northern France colonies must also be implemented. These insular or peripheral colonies could be at higher risk of extinction in the near future.

3.
Mol Ecol Resour ; 18(3): 474-489, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29288544

RESUMO

Assessing diet variability is of main importance to better understand the biology of bats and design conservation strategies. Although the advent of metabarcoding has facilitated such analyses, this approach does not come without challenges. Biases may occur throughout the whole experiment, from fieldwork to biostatistics, resulting in the detection of false negatives, false positives or low taxonomic resolution. We detail a rigorous metabarcoding approach based on a short COI minibarcode and two-step PCR protocol enabling the "all at once" taxonomic identification of bats and their arthropod prey for several hundreds of samples. Our study includes faecal pellets collected in France from 357 bats representing 16 species, as well as insect mock communities that mimic bat meals of known composition, negative and positive controls. All samples were analysed using three replicates. We compare the efficiency of DNA extraction methods, and we evaluate the effectiveness of our protocol using identification success, taxonomic resolution, sensitivity and amplification biases. Our parallel identification strategy of predators and prey reduces the risk of mis-assigning prey to wrong predators and decreases the number of molecular steps. Controls and replicates enable to filter the data and limit the risk of false positives, hence guaranteeing high confidence results for both prey occurrence and bat species identification. We validate 551 COI variants from arthropod including 18 orders, 117 family, 282 genus and 290 species. Our method therefore provides a rapid, resolutive and cost-effective screening tool for addressing evolutionary ecological issues or developing "chirosurveillance" and conservation strategies.


Assuntos
Artrópodes/genética , Quirópteros/fisiologia , Dieta , Animais , Artrópodes/classificação , Quirópteros/classificação , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico/métodos , Fezes/química , Comportamento Alimentar , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA