Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(14): e202300162, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211532

RESUMO

Isocitrate lyase (ICL) isoform 2 is an essential enzyme for some clinical Mycobacterium tuberculosis (Mtb) strains during infection. In the laboratory Mtb strain H37Rv, the icl2 gene encodes two distinct gene products - Rv1915 and Rv1916 - due to a frameshift mutation. This study aims to characterise these two gene products to understand their structure and function. While we were unable to produce Rv1915 recombinantly, soluble Rv1916 was obtained with sufficient yield for characterisation. Kinetic studies using UV-visible spectrophotometry and 1 H-NMR spectroscopy showed that recombinant Rv1916 does not possess isocitrate lyase activity, while waterLOGSY binding experiments demonstrated that it could bind acetyl-CoA. Finally, X-ray crystallography revealed structural similarities between Rv1916 and the C-terminal domain of ICL2. Considering the probable differences between full-length ICL2 and the gene products Rv1915 and Rv1916, care must be taken when using Mtb H37Rv as a model organism to study central carbon metabolism.


Assuntos
Mycobacterium tuberculosis , Acetilcoenzima A , Isocitrato Liase/química , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Cinética , Proteínas de Bactérias/metabolismo
2.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570610

RESUMO

Phosphatidylcholine-specific phospholipase C (PC-PLC) is an enzyme that catalyzes the formation of the important secondary messengers phosphocholine and diacylglycerol (DAG) from phosphatidylcholine. Although PC-PLC has been linked to the progression of many pathological conditions, including cancer, atherosclerosis, inflammation and neuronal cell death, studies of PC-PLC on the protein level have been somewhat neglected with relatively scarce data. To date, the human gene expressing PC-PLC has not yet been found, and the only protein structure of PC-PLC that has been solved was from Bacillus cereus (PC-PLCBc). Nonetheless, there is evidence for PC-PLC activity as a human functional equivalent of its prokaryotic counterpart. Additionally, inhibitors of PC-PLCBc have been developed as potential therapeutic agents. The most notable classes include 2-aminohydroxamic acids, xanthates, N,N'-hydroxyureas, phospholipid analogues, 1,4-oxazepines, pyrido[3,4-b]indoles, morpholinobenzoic acids and univalent ions. However, many medicinal chemistry studies lack evidence for their cellular and in vivo effects, which hampers the progression of the inhibitors towards the clinic. This review outlines the pathological implications of PC-PLC and highlights current progress and future challenges in the development of PC-PLC inhibitors from the literature.


Assuntos
Fosfatidilcolinas , Fosfolipases Tipo C , Humanos , Fosfatidilcolinas/metabolismo
3.
Crit Rev Biochem Mol Biol ; 55(3): 274-308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441137

RESUMO

The ubiquitous type-3 copper enzyme polyphenol oxidase (PPO) has found itself the subject of profound inhibitor research due to its role in fruit and vegetable browning and mammalian pigmentation. The enzyme itself has also been applied in the fields of bioremediation, biocatalysis and biosensing. However, the nature of PPO substrate specificity has remained elusive despite years of study. Numerous theories have been proposed to account for the difference in tyrosinase and catechol oxidase activity. The "blocker residue" theory suggests that bulky residues near the active site cover CuA, preventing monophenol coordination. The "second shell" theory suggests that residues distant (∼8 Å) from the active site, guide and position substrates within the active site based on their properties e.g., hydrophobic, electrostatic. It is also hypothesized that binding specificity is related to oxidation mechanisms of the catalytic cycle, conferred by coordination of a conserved water molecule by other conserved residues. In this review, we highlight recent developments in the structural and mechanistic studies of PPOs and consolidate key concepts in our understanding toward the substrate specificity of PPOs.


Assuntos
Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Animais , Biocatálise , Biodegradação Ambiental , Técnicas Biossensoriais , Domínio Catalítico , Fungos/enzimologia , Humanos , Insetos/enzimologia , Reação de Maillard , Monofenol Mono-Oxigenase/antagonistas & inibidores , Plantas/enzimologia , Substâncias Redutoras/farmacologia , Especificidade por Substrato
4.
Chembiochem ; 22(15): 2521-2525, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34137488

RESUMO

Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia
5.
Bioorg Med Chem Lett ; 38: 127857, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609661

RESUMO

Heat shock protein 90 (Hsp90) is an essential molecular chaperone that performs vital stress-related and housekeeping functions in cells and is a current therapeutic target for diseases such as cancers. Particularly, the development of Hsp90 C-terminal domain (CTD) inhibitors is highly desirable as inhibitors that target the N-terminal nucleotide-binding domain may cause unwanted biological effects. Herein, we report on the discovery of two drug-like novel Hsp90 CTD inhibitors by using virtual screening and intrinsic protein fluorescence quenching binding assays, paving the way for future development of new therapies that employ molecular chaperone inhibitors.


Assuntos
Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
6.
IUBMB Life ; 72(2): 266-274, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509345

RESUMO

In Escherichia coli, the expression of heterologous genes for the production of recombinant proteins can be challenging due to the codon bias of different organisms. The rare codons AGG and AGA are among the rarest in E. coli. In this work, by using the human gene RioK2 as case study, we found that the presence of consecutive AGG-AGA led to a premature stop, which may be caused by an event of -1 frameshift. We found that translational problems caused by consecutive AGG-AGA are sequence dependent, in particular, in sequences that contain multiple rare AGG or AGA codons elsewhere. Translational problems can be alleviated by different strategies, including codon harmonization, codon optimization, or by substituting the consecutive AGG-AGA codons by more frequent arginine codons. Overall, our results furthered our understanding about the relationship between consecutive rare codons and translational problems. Such information will aid the design of DNA sequence for the production of recombinant proteins.


Assuntos
Códon , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência de Arginina/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Proteínas Recombinantes/genética , Ribossomos/metabolismo
7.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717777

RESUMO

The molecular chaperone heat shock protein 90 (Hsp90) is a current inhibition target for the treatment of diseases, including cancer. In humans, there are two major cytosolic isoforms of Hsp90 (Hsp90α and Hsp90ß). Hsp90α is inducible and Hsp90ß is constitutively expressed. Most Hsp90 inhibitors are pan-inhibitors that target both cytosolic isoforms of Hsp90. The development of isoform-selective inhibitors of Hsp90 may enable better clinical outcomes. Herein, by using virtual screening and binding studies, we report our work in the identification and characterisation of novel isoform-selective ligands for the middle domain of Hsp90ß. Our results pave the way for further development of isoform-selective Hsp90 inhibitors.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Xantonas/química , Sítios de Ligação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Espectrometria de Fluorescência , Xantonas/farmacologia
8.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878088

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme in humans, and a current and promising inhibition target for the development of new chemosensitizing agents due to its ability to remove DNA damage caused by topoisomerase 1 (Top1) poisons such as topotecan and irinotecan. Herein, we report our work on the synthesis and characterization of new Tdp1 inhibitors that combine the arylcoumarin (neoflavonoid) and monoterpenoid moieties. Our results showed that they are potent Tdp1 inhibitors with IC50 values in the submicromolar range. In vivo experiments with mice revealed that compound 3ba (IC50 0.62 µM) induced a significant increase in the antitumor effect of topotecan on the Krebs-2 ascites tumor model. Our results further strengthen the argument that Tdp1 is a druggable target with the potential to be developed into a clinically-potent adjunct therapy in conjunction with Top1 poisons.


Assuntos
Carcinoma Krebs 2/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Monoterpenos , Proteínas de Neoplasias , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases/metabolismo , Animais , Carcinoma Krebs 2/enzimologia , Carcinoma Krebs 2/patologia , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Monoterpenos/síntese química , Monoterpenos/química , Monoterpenos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31619021

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising therapeutic target in cancer therapy. Combination chemotherapy using Tdp1 inhibitors as a component can potentially improve therapeutic response to many chemotherapeutic regimes. A new set of usnic acid derivatives with hydrazonothiazole pharmacophore moieties were synthesized and evaluated as Tdp1 inhibitors. Most of these compounds were found to be potent inhibitors with IC50 values in the low nanomolar range. The activity of the compounds was verified by binding experiments and supported by molecular modeling. The ability of the most effective inhibitors, used at non-toxic concentrations, to sensitize tumors to the anticancer drug topotecan was also demonstrated. The order of administration of the inhibitor and topotecan on their synergistic effect was studied, suggesting that prior or simultaneous introduction of the inhibitor with topotecan is the most effective.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Diester Fosfórico Hidrolases , Ligação Proteica , Relação Estrutura-Atividade
10.
Chembiochem ; 19(21): 2262-2267, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144273

RESUMO

In animals, the response to chronic hypoxia is mediated by upregulation of the α,ß-heterodimeric hypoxia-inducible factors (HIFs). Levels of HIFα isoforms, but not HIFß, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for the human HIF-1/2α isoforms and their two oxygen-dependent degradation domains (ODDs) are proposed. We report kinetic and NMR analyses of the ODD selectivity of the catalytic domain of wild-type PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala scanning and "hybrid" ODD peptides imply that the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results indicate how the PHDs achieve selectivity for HIFα ODDs and might be of use in identifying substrate-selective PHD inhibitors.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Domínio Catalítico , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Especificidade por Substrato
11.
Org Biomol Chem ; 16(29): 5286-5293, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29989642

RESUMO

The proposed structure of talarolide A, a cycloheptapeptide featuring a hydroxamate moiety within the peptide backbone, was successfully synthesized. An initial attempt to synthesize a linear peptide precursor containing a C-terminal N-benzyloxy glycine residue was problematic due to an unreported on-resin reduction of N-benzyloxy glycine to glycine. After repositioning the peptide cyclization point, a new linear peptide sequence was successfully prepared using Fmoc-solid-phase peptide synthesis. Subsequent solution-phase cyclization and removal of protecting groups furnished the synthetic talarolide A in good yield. Despite the mismatch of the NMR data between the synthetic talarolide A and the natural product, a detailed structural analysis using 2D NMR spectroscopy, together with re-synthesis of the same synthetic material using two additional cyclization sites, confirmed that our synthetic product has the reported structure of talarolide A.

12.
Molecules ; 23(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261631

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that mends topoisomerase 1-mediated DNA damage. Tdp1 is a current inhibition target for the development of improved anticancer treatments, as its inhibition may enhance the therapeutic effect of topoisomerase 1 poisons. Here, we report a study on the development of a novel class of Tdp1 inhibitors that is based on the octahydro-2H-chromene scaffold. Inhibition and binding assays revealed that these compounds are potent inhibitors of Tdp1, with IC50 and KD values in the low micromolar concentration range. Molecular modelling predicted plausible conformations of the active ligands, blocking access to the enzymatic machinery of Tdp1. Our results thus help establish a structural-activity relationship for octahydro-2H-chromene-based Tdp1 inhibitors, which will be useful for future Tdp1 inhibitor development work.


Assuntos
Benzopiranos/química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
13.
Angew Chem Int Ed Engl ; 57(14): 3631-3635, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29345033

RESUMO

The first synthesis of the anti-TB cyclic peptide callyaerin A (1), containing a rare (Z)-2,3-diaminoacrylamide bridging motif, is reported. Fmoc-formylglycine-diethylacetal was used as a masked equivalent of formylglycine in the synthesis of the linear precursor to 1. Intramolecular cyclization between the formylglycine residue and the N-terminal amine in the linear peptide precursor afforded the macrocyclic natural product 1. Synthetic 1 possessed potent anti-TB activity (MIC100 =32 µm) while its all-amide congener was inactive. Variable-temperature NMR studies of both the natural product and its all-amide analogue revealed the extraordinary rigidity imposed by this diaminoacrylamide unit on peptide conformation. The work reported herein pinpoints the intrinsic role that the (Z)-2,3-diaminoacrylamide moiety confers on peptide bioactivity.


Assuntos
Antituberculosos/síntese química , Produtos Biológicos/síntese química , Peptídeos Cíclicos/síntese química , Acrilamida/química , Sequência de Aminoácidos , Aminoácidos/química , Catálise , Ciclização , Oxirredução , Conformação Proteica
14.
Bioorg Med Chem Lett ; 27(2): 277-281, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913182

RESUMO

Heat shock protein 90 (HSP90) is a molecular chaperone that plays important functional roles in cells. The chaperone activity of HSP90 is regulated by the hydrolysis of ATP at the protein's N-terminal domain. HSP90, in particular the N-terminal domain, is a current inhibition target for therapeutic treatments of cancers. This paper describes an application of virtual screening, thermal shift assaying and protein NMR spectroscopy leading to the discovery of HSP90 inhibitors that contain the resorcinol structure. The resorcinol scaffold can be found in a class of HSP90 inhibitors that are currently undergoing clinical trials. The proved success of the resorcinol moiety in HSP90 inhibitors validates this combined virtual screen and biophysical technique approach, which may be applied for future inhibitor discovery work for HSP90 as well as other targets.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura
15.
Org Biomol Chem ; 15(5): 1100-1105, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28091667

RESUMO

Chemical tools that recognise post-translational modifications have promising applications in biochemistry and in therapy. We report a simple carboxycalixarene that selectively binds molecules containing di/trimethylammonium moieties in isolation, in cell lysates and when incorporated in histone peptides. Our findings reveal the potential of using carboxycalixarene-based receptors to study epigenetic regulation.

16.
Proc Natl Acad Sci U S A ; 111(37): 13331-6, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197067

RESUMO

The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolyl-hydroxylation in human hypoxia sensing has ancient origins.


Assuntos
Oxigênio/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Prolina/metabolismo , Pseudomonas putida/metabolismo , Chlamydomonas reinhardtii/metabolismo , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fator Tu de Elongação de Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
17.
Molecules ; 21(7)2016 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-27438816

RESUMO

Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.


Assuntos
Técnicas de Química Combinatória , Ligantes , Proteínas/química , Sítios de Ligação , Domínio Catalítico , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ligação Proteica , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas
18.
Biochem J ; 463(3): 363-72, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25120187

RESUMO

The prolyl hydroxylase domain proteins (PHDs) catalyse the post-translational hydroxylation of the hypoxia-inducible factor (HIF), a modification that regulates the hypoxic response in humans. The PHDs are Fe(II)/2-oxoglutarate (2OG) oxygenases; their catalysis is proposed to provide a link between cellular HIF levels and changes in O2 availability. Transient kinetic studies have shown that purified PHD2 reacts slowly with O2 compared with some other studied 2OG oxygenases, a property which may be related to its hypoxia-sensing role. PHD2 forms a stable complex with Fe(II) and 2OG; crystallographic and kinetic analyses indicate that an Fe(II)-co-ordinated water molecule, which must be displaced before O2 binding, is relatively stable in the active site of PHD2. We used active site substitutions to investigate whether these properties are related to the slow reaction of PHD2 with O2. While disruption of 2OG binding in a R383K variant did not accelerate O2 activation, we found that substitution of the Fe(II)-binding aspartate for a glutamate residue (D315E) manifested significantly reduced Fe(II) binding, yet maintained catalytic activity with a 5-fold faster reaction with O2. The results inform on how the precise active site environment of oxygenases can affect rates of O2 activation and provide insights into limiting steps in PHD catalysis.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Ferro/química , Ácidos Cetoglutáricos/química , Oxigênio/química , Domínio Catalítico , Cátions Bivalentes , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Isoquinolinas/química , Cinética , Manganês/química , Mutagênese Sítio-Dirigida , Oligopeptídeos/química , Ligação Proteica , Água/química , Zinco/química
19.
Biochemistry ; 53(15): 2483-93, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24684493

RESUMO

Deacetoxycephalosporin C synthase (DAOCS) catalyzes the oxidative ring expansion of penicillin N (penN) to give deacetoxycephalosporin C (DAOC), which is the committed step in the biosynthesis of the clinically important cephalosporin antibiotics. DAOCS belongs to the family of non-heme iron(II) and 2-oxoglutarate (2OG) dependent oxygenases, which have substantially conserved active sites and are proposed to employ a consensus mechanism proceeding via formation of an enzyme·Fe(II)·2OG·substrate ternary complex. Previously reported kinetic and crystallographic studies led to the proposal of an unusual "ping-pong" mechanism for DAOCS, which was significantly different from other members of the 2OG oxygenase superfamily. Here we report pre-steady-state kinetics and binding studies employing mass spectrometry and NMR on the DAOCS-catalyzed penN ring expansion that demonstrate the viability of ternary complex formation in DAOCS catalysis, arguing for the generality of the proposed consensus mechanism for 2OG oxygenases.


Assuntos
Transferases Intramoleculares/química , Ácidos Cetoglutáricos/química , Oxigenases/química , Proteínas de Ligação às Penicilinas/química , Catálise , Cristalografia por Raios X , Cinética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular
20.
Org Biomol Chem ; 12(33): 6354-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030770

RESUMO

2-Oxoglutarate and iron dependent oxygenases have potential for the stereoselective hydroxylation of amino acids and related compounds. The biochemical and kinetic properties of recombinant γ-butyrobetaine hydroxylase from human and Pseudomonas sp. AK1 were compared. The results reveal differences between the two BBOXs, including in their stimulation by ascorbate. Despite their closely related sequences, the two enzymes also display different substrate selectivities, including for the production of (di)hydroxylated betaines, implying use of engineered BBOXs for biocatalytic purposes may be productive.


Assuntos
Pseudomonas/enzimologia , gama-Butirobetaína Dioxigenase/metabolismo , Biocatálise , Humanos , Modelos Moleculares , Estrutura Molecular , Especificidade por Substrato , gama-Butirobetaína Dioxigenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA