Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431245

RESUMO

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Assuntos
Antineoplásicos/metabolismo , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Microbioma Gastrointestinal , Animais , Autofagia , Caenorhabditis elegans , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Dieta , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Modelos Animais , Pentosiltransferases/genética
2.
Cell ; 153(1): 228-39, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540700

RESUMO

The biguanide drug metformin is widely prescribed to treat type 2 diabetes and metabolic syndrome, but its mode of action remains uncertain. Metformin also increases lifespan in Caenorhabditis elegans cocultured with Escherichia coli. This bacterium exerts complex nutritional and pathogenic effects on its nematode predator/host that impact health and aging. We report that metformin increases lifespan by altering microbial folate and methionine metabolism. Alterations in metformin-induced longevity by mutation of worm methionine synthase (metr-1) and S-adenosylmethionine synthase (sams-1) imply metformin-induced methionine restriction in the host, consistent with action of this drug as a dietary restriction mimetic. Metformin increases or decreases worm lifespan, depending on E. coli strain metformin sensitivity and glucose concentration. In mammals, the intestinal microbiome influences host metabolism, including development of metabolic disease. Thus, metformin-induced alteration of microbial metabolism could contribute to therapeutic efficacy-and also to its side effects, which include folate deficiency and gastrointestinal upset.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Ácido Fólico/metabolismo , Hipoglicemiantes/farmacologia , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Metionina/metabolismo , Adenilato Quinase/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Biguanidas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Escherichia coli/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Metagenoma , Metformina/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224738

RESUMO

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Assuntos
RNA , Tetra-Hidrofolato Desidrogenase , Humanos , Linhagem Celular , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
4.
FASEB J ; 38(11): e23738, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38855924

RESUMO

Maternal nutrition contributes to gene-environment interactions that influence susceptibility to common congenital anomalies such as neural tube defects (NTDs). Supplemental myo-inositol (MI) can prevent NTDs in some mouse models and shows potential for prevention of human NTDs. We investigated effects of maternal MI intake on embryonic MI status and metabolism in curly tail mice, which are genetically predisposed to NTDs that are inositol-responsive but folic acid resistant. Dietary MI deficiency caused diminished MI in maternal plasma and embryos, showing that de novo synthesis is insufficient to maintain MI levels in either adult or embryonic mice. Under normal maternal dietary conditions, curly tail embryos that developed cranial NTDs had significantly lower MI content than unaffected embryos, revealing an association between diminished MI status and failure of cranial neurulation. Expression of inositol-3-phosphate synthase 1, required for inositol biosynthesis, was less abundant in the cranial neural tube than at other axial levels. Supplemental MI or d-chiro-inositol (DCI) have previously been found to prevent NTDs in curly tail embryos. Here, we investigated the metabolic effects of MI and DCI treatments by mass spectrometry-based metabolome analysis. Among inositol-responsive metabolites, we noted a disproportionate effect on nucleotides, especially purines. We also found altered proportions of 5-methyltetrahydrolate and tetrahydrofolate in MI-treated embryos suggesting altered folate metabolism. Treatment with nucleotides or the one-carbon donor formate has also been found to prevent NTDs in curly tail embryos. Together, these findings suggest that the protective effect of inositol may be mediated through the enhanced supply of nucleotides during neural tube closure.


Assuntos
Inositol , Defeitos do Tubo Neural , Inositol/metabolismo , Inositol/farmacologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Animais , Feminino , Camundongos , Gravidez , Embrião de Mamíferos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Metaboloma , Ácido Fólico/metabolismo
5.
Mol Genet Metab ; 142(3): 108496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761651

RESUMO

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Glicina Desidrogenase (Descarboxilante) , Glicina , Hiperglicinemia não Cetótica , Fígado , Animais , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Hiperglicinemia não Cetótica/terapia , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Glicina/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo , Ácido Fólico/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542524

RESUMO

The emergence of SARS-CoV-2 mutations poses significant challenges to diagnostic tests, as these mutations can reduce the sensitivity of commonly used RT-PCR assays. Therefore, there is a need to design diagnostic assays with multiple targets to enhance sensitivity. In this study, we identified a novel diagnostic target, the nsp10 gene, using nanopore sequencing. Firstly, we determined the analytical sensitivity and specificity of our COVID-19-nsp10 assay. The COVID-19-nsp10 assay had a limit of detection of 74 copies/mL (95% confidence interval: 48-299 copies/mL) and did not show cross-reactivity with other respiratory viruses. Next, we determined the diagnostic performance of the COVID-19-nsp10 assay using 261 respiratory specimens, including 147 SARS-CoV-2-positive specimens belonging to the ancestral strain and Alpha, Beta, Gamma, Delta, Mu, Eta, Kappa, Theta and Omicron lineages. Using a LightMix E-gene RT-PCR assay as the reference method, the diagnostic sensitivity and specificity of the COVID-19-nsp10 assay were found to be 100%. The median Cp values for the LightMix E-gene RT-PCR and our COVID-19-nsp10 RT-PCR were 22.48 (range: 12.95-36.60) and 25.94 (range 16.37-36.87), respectively. The Cp values of the COVID-19-nsp10 RT-PCR assay correlated well with those of the LightMix E-gene RT-PCR assay (Spearman's ρ = 0.968; p < 0.0001). In conclusion, nsp10 is a suitable target for a SARS-CoV-2 RT-PCR assay.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste para COVID-19 , Sensibilidade e Especificidade
7.
Transfusion ; 63(2): 294-304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511445

RESUMO

BACKGROUND: To compare the outcomes of patients requiring extracorporeal membrane oxygenation (ECMO) support who had a restrictive transfusion strategy with those who had a liberal strategy. STUDY DESIGN AND METHODS: We retrospectively reviewed all adult patients from 2010 to 2019 who received a minimum of one packed red blood cell (pRBC) during ECMO. Hemoglobin values before each transfusion were retrieved. Restrictive transfusion strategy was defined as a transfusion threshold ≤8.5 g/dl in all transfusion episodes for a single patient, while liberal transfusion strategy was defined as a transfusion threshold >8.5 g/dl in any transfusion episode. RESULTS: The analysis included 763 patients, with 138 (18.1%) patients in the restrictive and 625 (81.9%) in the liberal transfusion strategy group. The median hemoglobin level, taking into account all measured hemoglobin values, during ECMO support was 8.3 and 9.9 g/dl, and the average units of pRBC received per day were 0.7 (0.3-1.8) and 1.2 (0.6-2.3), respectively. There were no significant differences in intensive care unit (ICU) mortality (adjusted odds ratio (OR), 0.86; 95% CI 0.56-1.30; p = .47), hospital mortality (adjusted OR, 0.79; 95% CI 0.52-1.21; p = .28), and 90-day mortality (adjusted OR, 0.84; 95% CI 0.55-1.28; p = .42) between the two groups. Among subgroup analyses, a restrictive transfusion strategy was associated with decreased risk of ICU mortality in patients on veno-venous ECMO (adjusted OR, 0.36; 95% CI 0.17-0.73; p = .005). There was no heterogeneity on outcomes across patients stratified by age, APACHE IV score, or need for large volume transfusion. DISCUSSION: Our data suggested it may be safe to adopt a restrictive red cell transfusion threshold of 8.5 g/dl in patients on ECMO, and highlighted the need for prospective trials in this heavily-transfused population.


Assuntos
Oxigenação por Membrana Extracorpórea , Adulto , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Transfusão de Sangue , Hemoglobinas/análise
8.
Clin Infect Dis ; 75(2): 288-296, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34718428

RESUMO

BACKGROUND: Hepatitis E virus (HEV) variants belonging to Orthohepevirus species A (HEV-A) are the primary cause of human hepatitis E. However, we previously reported that Orthohepevirus species C genotype 1 (HEV-C1), a divergent HEV variant commonly found in rats, also causes hepatitis in humans. Here, we present a clinical-epidemiological investigation of human HEV-C1 infections detected in Hong Kong, with an emphasis on outcomes in immunocompromised individuals. METHODS: A surveillance system for detecting human HEV-C1 infections was established in Hong Kong. Epidemiological and clinical characteristics of HEV-C1 cases identified via this system between 1 August 2019 and 31 December 2020 were retrieved. Phylogenetic analysis of HEV-C1 strain sequences was performed. Infection outcomes of immunocompromised individuals with HEV-A and HEV-C1 infections were analyzed. RESULTS: HEV-C1 accounted for 8 of 53 (15.1%) reverse-transcription polymerase chain reaction (RT-PCR)-confirmed HEV infections in Hong Kong during the study period, raising the total number of HEV-C1 infections detected in the city to 16. Two distinct HEV-C1 strain groups caused human infections. Patients were elderly and/or immunocompromised; half tested negative for HEV immunoglobulin M. Cumulatively, HEV-C1 accounted for 9 of 21 (42.9%) cases of hepatitis E recorded in immunocompromised patients in Hong Kong. Immunocompromised HEV-C1 patients progressed to persistent hepatitis at similar rates (7/9 [77.8%]) as HEV-A patients (10/12 [75%]). HEV-C1 patients responded to oral ribavirin, although response to first course was sometimes poor or delayed. CONCLUSIONS: Dedicated RT-PCR-based surveillance detected human HEV-C1 cases that evade conventional hepatitis E diagnostic testing. Immunosuppressed HEV-C1-infected patients frequently progress to persistent HEV-C1 infection, for which ribavirin is a suitable treatment option.


Assuntos
Hepatite C , Vírus da Hepatite E , Hepatite E , Idoso , Animais , Vírus da Hepatite E/genética , Hong Kong/epidemiologia , Humanos , Filogenia , RNA Viral/genética , Ratos , Ribavirina
9.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35234870

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Surtos de Doenças , Feminino , Hong Kong/epidemiologia , Humanos , Mamíferos , RNA Viral/genética , SARS-CoV-2/genética
10.
Hepatology ; 73(1): 10-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960460

RESUMO

BACKGROUND AND AIMS: Hepatitis E virus (HEV) variants causing human infection predominantly belong to HEV species A (HEV-A). HEV species C genotype 1 (HEV-C1) circulates in rats and is highly divergent from HEV-A. It was previously considered unable to infect humans, but the first case of human HEV-C1 infection was recently discovered in Hong Kong. The aim of this study is to further describe the features of this zoonosis in Hong Kong. APPROACH AND RESULTS: We conducted a territory-wide prospective screening study for HEV-C1 infection over a 31-month period. Blood samples from 2,860 patients with abnormal liver function (n = 2,201) or immunosuppressive conditions (n = 659) were screened for HEV-C1 RNA. In addition, 186 captured commensal rats were screened for HEV-C1 RNA. Sequences of human-derived and rat-derived HEV-C1 isolates were compared. Epidemiological and clinical features of HEV-C1 infection were analyzed. HEV-C1 RNA was detected in 6/2,201 (0.27%) patients with hepatitis and 1/659 (0.15%) immunocompromised persons. Including the previously reported case, eight HEV-C1 infections were identified, including five in patients who were immunosuppressed. Three patients had acute hepatitis, four had persistent hepatitis, and one had subclinical infection without hepatitis. One patient died of meningoencephalitis, and HEV-C1 was detected in cerebrospinal fluid. HEV-C1 hepatitis was generally milder than HEV-A hepatitis. HEV-C1 RNA was detected in 7/186 (3.76%) rats. One HEV-C1 isolate obtained from a rat captured near the residences of patients was closely related to the major outbreak strain. CONCLUSIONS: HEV-C1 is a cause of hepatitis E in humans in Hong Kong. Immunosuppressed individuals are susceptible to persistent HEV-C1 infection and extrahepatic manifestations. Subclinical HEV-C1 infection threatens blood safety. Tests for HEV-C1 are required in clinical laboratories.


Assuntos
Reservatórios de Doenças/veterinária , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Hepatite E/transmissão , Idoso , Idoso de 80 Anos ou mais , Animais , Reservatórios de Doenças/virologia , Feminino , Vírus da Hepatite E/classificação , Hepatite Viral Animal/transmissão , Hong Kong/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Estudos Prospectivos , RNA Viral/genética , Ratos , Zoonoses/transmissão , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA