Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 32(3): 729-734, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476450

RESUMO

BACKGROUND: Transseptal access for large sheaths may be encumbered by tissue resistance against the sheath-dilator stepped interface. The ExpanSure Large Access Transseptal Dilator (Baylis Medical) is designed as a single introducer and dilation device with a smooth sheath-dilator transition to support transseptal puncture. It may facilitate ease and efficiency of interatrial crossing. METHODS: This study experimentally evaluated the crossing force of ExpanSure relative to a conventional 8.5 F Swartz SL1 transseptal sheath and dilator in a benchtop septum model. Its ability to reduce the subsequent crossing force of a 14 F WATCHMAN delivery sheath was also tested. The clinical use of ExpanSure, including procedure time, was then validated in a series of left atrial appendage closure (LAAC) procedures. RESULTS: In a benchtop septum model (N = 12), less peak force (1.90 ± 0.08 N vs. 2.36 ± 0.09 N; p < .001) and overall work (17.3 ± 1.2 mJ vs. 28.0 ± 1.9 mJ; p < .001) were required to advance ExpanSure relative to a conventional SL1 transseptal sheath and dilator system. Peak force (2.34 ± 0.24 N vs. 2.65 ± 0.21 N; p < .003) and overall work (28.5 ± 3.9 mJ vs. 35.4 ± 2.1 mJ; p < .001) to advance a WATCHMAN sheath were also significantly lower after using ExpanSure than after using a conventional transseptal system. In 19 LAAC procedures, ExpanSure crossed the septum smoothly and integrated readily, which enabled efficient procedure completion (mean total procedure time 37.6 ± 13.5 min), with 100% success and no procedure-related complications. CONCLUSION: Experimental force measurements, combined with early clinical experience using ExpanSure, suggest that the tapered design with smooth transition without dilator-sheath step-up and the larger diameter, both facilitated ease and efficiency of interatrial crossing.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Cateterismo Cardíaco/efeitos adversos , Átrios do Coração/cirurgia , Humanos , Punções , Resultado do Tratamento
2.
Cornea ; 33(4): 414-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24457454

RESUMO

PURPOSE: The aim of this study was to compare the tensile strength of slip knots with that of 3-1-1 knots using 10-0 nylon sutures. METHODS: In vitro, destructive materials testing was used. By adhering to the American Standard for Testing and Materials standards for testing of suture materials, slip knots were compared with 3-1-1 knots using 10-0 nylon suture material. Tensile testing was performed on each knot type using the Instron Microtester (Model 5848 Norwood, MA). Scanning electron microscopy was used to analyze all sutures tested to failure. The main outcome measure was the maximum load (newtons) or ultimate tensile strength before which each knot failed by breakage or by unraveling. RESULTS: The mean force resulting in failure by breakage of the 3-1-1 knot and slip knot was 0.71 and 0.64 N, respectively (P = 0.048). The mean force resulting in failure by the unraveling of the 3-1-1 knot and slip knot was 0.48 and 0.37 N, respectively (P = 0.022). CONCLUSIONS: In 10-0 nylon sutures, the 3-1-1 knot has a statistically significant greater tensile strength than the slip knot has in conditions wherein they fail by either breakage or unraveling.


Assuntos
Teste de Materiais , Técnicas de Sutura , Suturas , Resistência à Tração/fisiologia , Microscopia Eletrônica de Varredura , Nylons , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA