Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Chem Soc Rev ; 53(13): 6779-6829, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828885

RESUMO

This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.


Assuntos
Vesículas Extracelulares , Corantes Fluorescentes , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Corantes Fluorescentes/química , Traçadores Radioativos , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Meios de Contraste/metabolismo
2.
J Biol Inorg Chem ; 28(1): 43-55, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36469143

RESUMO

Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Cobre/farmacologia , Corantes Fluorescentes , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/metabolismo , Cisplatino/farmacologia
3.
Chemistry ; 29(68): e202302271, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37581946

RESUMO

Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 µM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 µM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.


Assuntos
Antineoplásicos , Complexos de Coordenação , Glioblastoma , Compostos Organometálicos , Humanos , Vanádio/química , Bases de Schiff/química , Compostos Organometálicos/química , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Piridinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligantes , Complexos de Coordenação/farmacologia
4.
Chemistry ; 29(54): e202203323, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37385951

RESUMO

As shown by IncuCyte Zoom imaging proliferation assays, invasive triple-negative human breast MDA-MB-231 cancer cells treated with sub-toxic doses (5.0-20 µM, 72 h) of [GaQ3 ] (Q=8-hydroxyquinolinato) caused profound morphological changes and inhibition of cell migration, which were likely due to terminal cell differentiation or similar phenotypical change. This is the first demonstration of potential use of a metal complex in differentiation anti-cancer therapy. Additionally, a trace amount of Cu(II) (0.20 µM) added to the medium dramatically increased [GaQ3 ] cytotoxicity (IC50 ~2 µM, 72 h) due to its partial dissociation and the action of the HQ ligand as a Cu(II) ionophore, as shown with electrospray mass spectrometry and fluorescence spectroscopy assays in the medium. Hence, cytotoxicity of [GaQ3 ] is strongly linked to ligand binding of essential metal ions in the medium, for example, Cu(II). Appropriate delivery mechanisms of such complexes and their ligands could enable a powerful new triple therapeutic approach for cancer chemotherapy, including cytotoxicity against primary tumour, arrest of metastases, and activation of innate and adaptive immune responses.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química , Metais/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
5.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858311

RESUMO

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Humanos , Complexos de Coordenação/farmacologia , Vanádio/farmacologia , Compostos Organometálicos/farmacologia , Transferrina , Albuminas , Hipóxia , Catecóis/farmacologia
6.
Inorg Chem ; 61(51): 20757-20773, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36519680

RESUMO

A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 µM DTB, 34 ± 7 µM 3-MeCat, and 19 ± 2 µM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 µM DTB, 18 ± 3 µM 3-MeCat, and 8.1 ± 0.6 µM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.


Assuntos
Complexos de Coordenação , Vanádio , Humanos , Vanádio/farmacologia , Vanádio/química , Cisplatino , Bases de Schiff/farmacologia , Bases de Schiff/química , Água , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/farmacologia , Ligantes
7.
Chembiochem ; 21(8): 1188-1200, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31701616

RESUMO

RuII -arene complexes provide a versatile scaffold for novel anticancer drugs. Seven new RuII -arene-thiocarboxylato dimers were synthesized and characterized. Three of the complexes (2 a, b and 5) showed promising antiproliferative activities in MDA-MB-231 (human invasive breast cancer) cells, and were further tested in a panel of fifteen cancerous and noncancerous cell lines. Complex 5 showed moderate but remarkably selective activity in MDA-MB-231 cells (IC50 =39±4 µm Ru). Real-time proliferation studies showed that 5 induced apoptosis in MDA-MB-231 cells but had no effect in A549 (human lung cancer, epithelial) cells. By contrast, 2 a and b showed moderate antiproliferative activity, but no apoptosis, in either cell line. Selective cytotoxicity of 5 in aggressive, mesenchymal-like MDA-MB-231 cells over many common epithelial cancer cell lines (including noninvasive breast cancer MCF-7) makes it an attractive lead compound for the development of specifically antimetastatic Ru complexes with low systemic toxicity.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , Ácidos Carboxílicos/química , Complexos de Coordenação/farmacologia , Rutênio/química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química , Células Tumorais Cultivadas
8.
Inorg Chem ; 59(22): 16143-16153, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32578416

RESUMO

The role of vanadium binding to transferrin (Tf) in the biological activities of vanadium-based drugs is a matter of considerable debate. In order to determine whether V(V) and/or V(IV) binding to Tf (in apo, monoferric(III), and diferric(III) forms) enhances or inhibits biological activities, cellular V uptake and in vitro antiproliferative activity were examined in the presence and absence of different forms of Tf and other biomolecules under normoxic conditions. These data were combined with studies on V-Tf binding in cell culture medium and its role in Tf interactions with transferrin receptor 1 (TfR1), using the biolayer interferometry (BLI) model of the Tf cycle that was developed in our group. The results showed that both V(V) and V(IV) oxidation states efficiently bind to vacant Fe(III) binding sites of Tf even in the presence of a 20-fold molar excess of albumin, although V does not displace Tf-bound Fe(III) under these conditions. Binding of V(V) or V(IV) to Tf in cell culture medium drastically reduced its cellular uptake and antiproliferative activity in the A549 (human lung cancer) cell line that expresses TfR1. BLI and gel electrophoresis studies showed that V(V/IV) binding to partially Fe(III) saturated Tf did not enhance the affinity of Tf binding to TfR1 at pH 7.4 but did disrupt Tf conformational changes under endosome-mimicking conditions (pH 5.6, 0.10 mM citrate). Hence, it is postulated that the absence of a significant cellular uptake of Tf-bound V(V/IV) is likely to be due to the return of undissociated V(V/IV)-Tf adducts to the cell surface after the endosomal step. Collectively, these data show that the biotransformation of V-based drugs leads to V(V/IV)-Tf binding in the blood serum and inhibits, rather than enhances, the biological activity of such drugs under aerobic conditions. These results indicate that the design of V-based drugs that are stable enough to survive in the blood, enter cells intact, and release the active components intracellularly is likely to be required for their clinical success.


Assuntos
Antineoplásicos/farmacologia , Transferrina/farmacologia , Vanádio/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Transferrina/química , Transferrina/metabolismo , Células Tumorais Cultivadas , Vanádio/química , Vanádio/metabolismo
9.
Angew Chem Int Ed Engl ; 59(37): 15834-15838, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32598089

RESUMO

The chemistry and short lifetimes of metal-based anti-cancer drugs can be turned into an advantage for direct injections into tumors, which then allow the use of highly cytotoxic drugs. The release of their less toxic decomposition products into the blood will lead to decreased toxicity and can even have beneficial effects. We present a ternary VV complex, 1 ([VOL1 L2 ], where L1 is N-(salicylideneaminato)-N'-(2-hydroxyethyl)ethane-1,2-diamine and L2 is 3,5-di-tert-butylcatechol), which enters cells intact to induce high cytotoxicity in a range of human cancer cells, including T98g (glioma multiforme), while its decomposition products in cell culture medium were ≈8-fold less toxic. 1 was 12-fold more toxic than cisplatin in T98g cells and 6-fold more toxic in T98g cells than in a non-cancer human cell line, HFF-1. Its high toxicity in T98g cells was retained in the presence of physiological concentrations of the two main metal-binding serum proteins, albumin and transferrin. These properties favor further development of 1 for brain cancer treatment by intratumoral injections.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Complexos de Coordenação/química , Compostos de Vanádio/química , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Complexos de Coordenação/uso terapêutico , Meios de Cultura , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Vanádio/uso terapêutico
10.
Inorg Chem ; 58(8): 4880-4893, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932487

RESUMO

Rhodium(III) anticancer drugs can exert preferential antimetastatic or cytotoxic activities, which are dependent on subtle structural changes. In order to delineate factors affecting the biotransformations and speciation, mer,cis-[RhCl3( S-dmso)2( O-dmso)] (A1) and mer,cis-[RhCl3( S-dmso)2(2N-indazole)] (A2) have been studied by X-ray absorption spectroscopy (XAS). Interactions of these complexes with saline buffer, cell culture media, serum proteins (albumin and apo-transferrin), native and chemically degraded collagen gels, and A549 cells have been studied using linear combination fitting (LCF) and 3D scatter plots of XAS data. Following initial aquation and hydrolysis reactions involving stepwise displacement of Cl- and S-/ O-dmso ligands, the Rh(III) complexes underwent further ligand substitution reactions with biological nucleophiles (e.g., amino acid residues of serum proteins). The reaction of A1 with chemically degraded collagen gel was postulated to be a key reason for its antimetastatic activity. Analyses of the XAS of Rh-treated bulk cells were consistent with structure-reactivity relationships in which the more reactive A1 was predominantly antimetastatic and the less reactive A2 was predominantly cytotoxic, showing relationships parallel to typical Ru(III) anticancer agents, i.e., NAMI-A ([ImH] trans-[RuCl4( S-dmso)( N-imidazole)2], ImH = imidazolium cation) and KP1019/NKP1339 (KP1019, [IndH] trans-[RuCl4(N-indazole)2], IndH = indazolium cation; NKP1339, sodium trans-[RuCl4(2N-indazole)2]), respectively.


Assuntos
Antineoplásicos/farmacologia , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Metástase Neoplásica/prevenção & controle , Ródio/química , Ródio/farmacologia , Espectroscopia por Absorção de Raios X/métodos , Células A549 , Proteínas Sanguíneas/química , Meios de Cultura , Meios de Cultura Livres de Soro , Humanos , Relação Estrutura-Atividade
11.
J Biol Inorg Chem ; 22(5): 663-672, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28374136

RESUMO

Cytotoxic effects of Metvan (cis-[VIVO(OSO3)(Me2phen)2], where Me2phen = 4,7-dimethyl-1,10-phenanthroline) and its analogues with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) ligands in cultured human lung cancer (A549) cells have been re-investigated in conjunction with reactivity of the V(IV) complexes in neutral aerated aqueous solutions and in cell culture medium. All the V(IV) complexes underwent rapid oxidation to the corresponding V(V) species (cis-[VV(O)2L2]+), followed by release of free ligands (shown by electrospray mass spectrometry). Decomposition of V(IV) complexes in cell culture medium within minutes at 310 K was confirmed by UV-Vis and EPR spectroscopies. High cytotoxicities (low µM or sub-µM IC50 range in 72 h assays) were observed for the phen and Me2phen complexes, but they were not different from that of the corresponding free ligands, which confirmed that the original V(IV) complexes played no significant role in the observed biological activities. The cytotoxicities of the ligands were most likely due to their complexation of redox-active essential metal ions, such as Cu(II) and Fe(II), in the medium, and their increased cellular uptake, leading to oxidative stress-related cell death. These results emphasize the need to assess the stability of metal-based drugs under the conditions of biological assays, particularly when biologically active ligands, such as 1,10-phenanthroline and its derivatives, are used. These ligands have high systemic toxicities in vivo and their release in the GI tract and blood makes the complexes unsuitable for use as anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Meios de Cultura/química , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Vanádio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Fenantrolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Vanádio/química
12.
J Synchrotron Radiat ; 23(Pt 3): 743-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140154

RESUMO

The design and operation of a low-volume spectroelectrochemical cell for X-ray absorption spectroscopy (XAS) of solutions at room temperature is described. Fluorescence XAS measurements are obtained from samples contained in the void space of a 50 µL reticulated vitreous carbon (sponge) working electrode. Both rapid electrosynthesis and control of the effects of photoreduction are achieved by control over the flow properties of the solution through the working electrode, where a good balance between the rate of consumption of sample and the minimization of decomposition was obtained by pulsing the flow of the solution by 1-2 µL with duty cycle of ∼3 s while maintaining a small net flow rate (26-100 µL h(-1)). The performance of the cell in terms of control of the redox state of the sample and minimization of the effects of photoreduction was demonstrated by XAS measurements of aqueous solutions of the photosensitive Fe(III) species, [Fe(C2O4)3](3-), together with that of the electrogenerated [Fe(C2O4)3](4-) product. The current response from the cell during the collection of XAS spectra provides an independent measure of the stability of the sample of the measurement. The suitability of the approach for the study of small volumes of mM concentrations of protein samples was demonstrated by the measurement of the oxidized and electrochemically reduced forms of cytochrome c.

13.
Angew Chem Int Ed Engl ; 55(28): 8104-7, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27197571

RESUMO

Cr(III) binding to transferrin (Tf; the main Fe(III) transport protein) has been postulated to mediate cellular uptake of Cr(III) to facilitate a purported essential role for this element. Experiments using HepG2 (human hepatoma) cells, which were chosen because of high levels of the transferrin receptor, showed that Cr(III) binding to vacant Fe(III) -binding sites of human Tf effectively blocks cellular Cr(III) uptake. Through bio-layer interferometry studies of the Tf cycle, it was found that both exclusion and efflux of Cr2 (III) Tf from cells was caused by 1) relatively low Cr2 Tf affinity to cell-surface Tf receptors compared to Fe2 Tf, and 2) disruption of metal release under endosomal conditions and post-endosomal Tf dissociation from the receptor. These data support mounting evidence that Cr(III) is not essential and that Tf binding is likely to be a natural protective mechanism against the toxicity and potential genotoxicity of dietary Cr through blocking Cr(III) cellular accumulation.

14.
Angew Chem Int Ed Engl ; 55(5): 1742-5, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26696553

RESUMO

Chromium(III) nutritional supplements are widely consumed for their purported antidiabetic activities. X-ray fluorescence microscopy (XFM) and X-ray absorption near-edge structure (XANES) studies have now shown that non-toxic doses of [Cr3 O(OCOEt)6 (OH2 )3 ](+) (A), a prospective antidiabetic drug that undergoes similar H2 O2 induced oxidation reactions in the blood as other Cr supplements, was also oxidized to carcinogenic Cr(VI) and Cr(V) in living cells. Single adipocytes treated with A had approximately 1 µm large Cr hotspots containing Cr(III) , Cr(V) , and Cr(VI) (primarily Cr(VI) thiolates) species. These results strongly support the hypothesis that the antidiabetic activity of Cr(III) and the carcinogenicity of Cr(VI) compounds arise from similar mechanisms involving highly reactive Cr(VI) and Cr(V) intermediates, and highlight concerns over the safety of Cr(III) nutritional supplements.


Assuntos
Adipócitos/metabolismo , Carcinógenos/síntese química , Cromo/metabolismo , Suplementos Nutricionais , Carcinógenos/química , Microscopia de Fluorescência , Oxirredução
15.
Inorg Chem ; 54(14): 6707-18, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25906315

RESUMO

The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([V(V)O4](3-), A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate V(V) species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% V(IV) of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that V(V) reduction to V(IV) occurred predominantly in the cytoplasm, while accumulation of V(V) in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear V(V) is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form V(IV) species, despite the prevalence of V(V) in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes.


Assuntos
Complexos de Coordenação/metabolismo , Hipoglicemiantes/metabolismo , Pró-Fármacos/metabolismo , Vanádio/metabolismo , Células 3T3-L1 , Animais , Biotransformação , Linhagem Celular Tumoral , Complexos de Coordenação/análise , Meios de Cultura/química , Meios de Cultura/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/análise , Camundongos , Pró-Fármacos/análise , Vanadatos/análise , Vanadatos/metabolismo , Vanádio/análise , Espectroscopia por Absorção de Raios X
16.
Inorg Chem ; 54(16): 7753-66, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230577

RESUMO

Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (<50 µM), this role of RBC may promote the formation of V(III)-transferrin as a major V carrier in the blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro-drugs that have broad applications across medicine.


Assuntos
Eritrócitos/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Vanádio/química , Animais , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Bovinos , Ratos , Espectroscopia por Absorção de Raios X
17.
Chemistry ; 20(38): 12056-60, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088743

RESUMO

A library of X-ray absorption near-edge structure (XANES) spectroscopic data for V(V), V(IV) and V(III) complexes with a broad range of biologically relevant ligand has been used to demonstrate that three-dimensional plots of key XANES parameters (pre-edge and edge energies; pre-edge and white line intensities) can be used for the prediction of V oxidation states and coordination numbers in biological or environmental matrices. The reliability of the technique has been demonstrated by re-analysis of the published XANES data for a V(V)-dependent bromoperoxidase.

18.
Inorg Chem ; 53(19): 10685-94, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25222599

RESUMO

While Cr(III) dietary supplements are widely consumed, some commercial supplements have yet to be structurally characterized. X-ray absorption spectroscopy and other spectroscopic methods were used to characterize Cr(III) nicotinato nutritional supplements that have long been used in complementary medicine. Different ratios of nicotinic acid and CrCl3·6H2O (trans-[CrCl2(OH2)4]Cl·2H2O) at different pH values gave a range of products. The local structures of Cr(III) nicotinato complexes obtained at pH 7 and of the patented complex were characterized by performing multiple-scattering analysis of their EXAFS spectra as well as EPR, UV-vis, and IR spectroscopies. For the first time, these complexes have been definitively characterized as nicotinato-bridged polymers of dihydroxido-bridged dinuclear Cr(III) cores. In the patented complex used in commercial preparations, each Cr is octahedral with an additional terminal O-bound nicotinato ligand, two bridging nicotinato (one O and one N bound), and an aqua ligand. The other species also have two or three bridging nicotinato ligands and an aqua and, in some cases, a terminal hydroxido ligand, which is dependent upon the stoichiometry of the reactants and the pH value of the solution in which they are prepared.


Assuntos
Cromo/química , Suplementos Nutricionais , Ácidos Nicotínicos/química , Compostos Organometálicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Compostos Organometálicos/síntese química , Análise de Componente Principal , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
19.
PLoS One ; 19(5): e0303095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776281

RESUMO

The growing burden of expired medicines contributes to environmental contamination and landfill waste accumulation. Medicinal honey, with its non-toxic nature and potentially long shelf-life, represents a promising and underutilised therapeutic that avoids some of these issues. However, limited knowledge on how its antimicrobial properties change over time combined with a lack of reliable processes in the honey industry for measuring antimicrobial potential, hinder its clinical adoption. Using a diverse selection of 30 Australian honey samples collected between 2005 and 2007, we comprehensively evaluated their antibacterial and antifungal activity and pertinent physical and chemical properties with the aims of assessing the effect of long-term storage on activity, pinpointing factors associated with antimicrobial efficacy, and establishing robust assessment methods. Minimum inhibitory concentration (MIC) assays proved superior to the standard phenol equivalence assay in capturing the full range of antimicrobial activity present in honey. Correlations between activity and a range of physical and chemical properties uncovered significant associations, with hydrogen peroxide, antioxidant content, and water activity emerging as key indicators in non-Leptospermum honey. However, the complex nature and the diverse composition of honey samples precludes the use of high-throughput chemical tests for accurately assessing this activity, and direct assessment using live microorganisms remains the most economical and reliable method. We provide recommendations for different methods of assaying various honey properties, taking into account their accuracy along with technical difficulty and safety considerations. All Leptospermum and fourteen of seventeen non-Leptospermum honey samples retained at least some antimicrobial properties after 15-17 years of storage, suggesting that honey can remain active for extended periods. Overall, the results of this study will help industry meet the growing demand for high-quality, medicinally active honey while ensuring accurate assessment of its antimicrobial potential.


Assuntos
Mel , Testes de Sensibilidade Microbiana , Mel/análise , Austrália , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/análise , Antioxidantes/farmacologia , Antioxidantes/análise , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/análise
20.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927067

RESUMO

Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Monócitos , Humanos , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Monócitos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ácidos Nucleicos/metabolismo , Coloração e Rotulagem/métodos , Células THP-1 , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Lipopolissacarídeos/farmacologia , Linhagem Celular Tumoral , Células A549
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA