Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(15): 157208, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568613

RESUMO

The spin Hall effect is a promising way for transforming charge currents into spin currents in spintronic devices. Large values of the spin Hall angle, the characteristic parameter of the yield of this transformation, have been recently found in noble metals doped with nonmagnetic impurities. We show that this can be explained by resonant scattering off impurity states split by the spin-orbit interaction. By using as an example copper doped with 5d impurities we describe the general conditions and provide a guide for experimentalists for obtaining the largest effects.

2.
Phys Rev Lett ; 99(16): 166601, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995275

RESUMO

We are able to continuously change the direction of polarization of spin accumulation in a nonmagnetic metal by varying the currents injected by two ferromagnetic spin injectors. From measurements made at a distance from the injection area, we find a cosvarphi variation of the spin signal. This confirms that the angle of polarization of the nonlocal spin polarization with respect to the magnetization of the fixed spin detector is continuously varied as we change the injection currents. We give an explanation for the origin of this simple cosvarphi variation of the spin signal.

3.
Phys Rev Lett ; 97(9): 097205, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026398

RESUMO

Recent data on the bias dependence of the spin transfer effect in magnetic tunnel junctions have shown that torque remains intact at bias voltages for which the tunneling magnetoresistance has been strongly reduced. We show that the current induced excitations due to hot electrons, while reducing the magnetoresistance, enhance both the charge current and the spin transfer in magnetic tunnel junctions in such a manner that the ratio of the torque to the charge current does not significantly change.

4.
Phys Rev Lett ; 93(25): 256602, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697923

RESUMO

In this Letter we construct a spinor transport theory and derive the equations of motion for the distribution functions for currents in noncollinear magnetic multilayers. We find the length scale which characterizes the transverse spin current is of the order of 3 nm for a ferromagnetic 3d transition metal such as Co; this alters one's prediction of the spin torque generated for free magnetic layers less than 3 nm. In the limit of large exchange splitting we reproduce the results previously found for spin currents across noncollinear multilayers inasmuch as there are no transverse spin currents in the layers themselves in this limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA