Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031746

RESUMO

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Assuntos
Biopolímeros/metabolismo , Mucinas/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Dissulfetos/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestrutura , Peptídeos/química , Domínios Proteicos , Multimerização Proteica , Fator de von Willebrand/química , Fator de von Willebrand/ultraestrutura
2.
Nucleic Acids Res ; 52(12): 6763-6776, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38721783

RESUMO

The kinetics of protein-DNA recognition, along with its thermodynamic properties, including affinity and specificity, play a central role in shaping biological function. Protein-DNA recognition kinetics are characterized by two key elements: the time taken to locate the target site amid various nonspecific alternatives; and the kinetics involved in the recognition process, which may necessitate overcoming an energetic barrier. In this study, we developed a coarse-grained (CG) model to investigate interactions between a transcription factor called the sex-determining region Y (SRY) protein and DNA, in order to probe how DNA conformational changes affect SRY-DNA recognition and binding kinetics. We find that, not only does a requirement for such a conformational DNA transition correspond to a higher energetic barrier for binding and therefore slower kinetics, it may further impede the recognition kinetics by increasing unsuccessful binding events (skipping events) where the protein partially binds its DNA target site but fails to form the specific protein-DNA complex. Such skipping events impose the need for additional cycles protein search of nonspecific DNA sites, thus significantly extending the overall recognition time. Our results highlight a trade-off between the speed with which the protein scans nonspecific DNA and the rate at which the protein recognizes its specific target site. Finally, we examine molecular approaches potentially adopted by natural systems to enhance protein-DNA recognition despite its intrinsically slow kinetics.


Assuntos
DNA , Conformação de Ácido Nucleico , Ligação Proteica , Termodinâmica , Cinética , DNA/metabolismo , DNA/química , Proteína da Região Y Determinante do Sexo/metabolismo , Proteína da Região Y Determinante do Sexo/química , Proteína da Região Y Determinante do Sexo/genética , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Simulação de Dinâmica Molecular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química
3.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597680

RESUMO

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Assuntos
Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítios de Ligação , Replicação do DNA , DNA Fúngico/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Mutação , Motivos de Nucleotídeos , Complexo de Reconhecimento de Origem/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/química , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
4.
Nucleic Acids Res ; 51(10): 4701-4712, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36774964

RESUMO

In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.


Many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition. Here, using the HMGB1 protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats, we demonstrate that D/E repeats can accelerate the target search process in the presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations and kinetic model provide mechanistic insight into this acceleration. Our current study illuminates an unprecedented role of the negatively charged IDRs.


Assuntos
Proteínas de Ligação a DNA , Proteínas Intrinsicamente Desordenadas , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Cinética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Biologia Sintética
5.
Proc Natl Acad Sci U S A ; 119(26): e2120456119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727975

RESUMO

The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1-ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.


Assuntos
Histonas , Proteínas Intrinsicamente Desordenadas , Receptores Imunológicos , Entropia , Histonas/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Receptores Imunológicos/química , Eletricidade Estática
6.
Proc Natl Acad Sci U S A ; 117(16): 8876-8883, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245812

RESUMO

Microtubules (MTs) are essential components of the eukaryotic cytoskeleton that serve as "highways" for intracellular trafficking. In addition to the well-known active transport of cargo by motor proteins, many MT-binding proteins seem to adopt diffusional motility as a transportation mechanism. However, because of the limited spatial resolution of current experimental techniques, the detailed mechanism of protein diffusion has not been elucidated. In particular, the precise role of tubulin tails and tail modifications in the diffusion process is unclear. Here, using coarse-grained molecular dynamics simulations validated against atomistic simulations, we explore the molecular mechanism of protein diffusion along MTs. We found that electrostatic interactions play a central role in protein diffusion; the disordered tubulin tails enhance affinity but slow down diffusion, and diffusion occurs in discrete steps. While diffusion along wild-type MT is performed in steps of dimeric tubulin, the removal of the tails results in a step of monomeric tubulin. We found that the energy barrier for diffusion is larger when diffusion on MTs is mediated primarily by the MT tails rather than the MT body. In addition, globular proteins (EB1 and PRC1) diffuse more slowly than an intrinsically disordered protein (Tau) on MTs. Finally, we found that polyglutamylation and polyglycylation of tubulin tails lead to slower protein diffusion along MTs, although polyglycylation leads to faster diffusion across MT protofilaments. Taken together, our results explain experimentally observed data and shed light on the roles played by disordered tubulin tails and tail modifications in the molecular mechanism of protein diffusion along MTs.


Assuntos
Difusão Facilitada/fisiologia , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Processamento de Proteína Pós-Traducional/fisiologia , Eletricidade Estática , Proteínas tau/metabolismo
7.
J Am Chem Soc ; 144(31): 14150-14160, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904499

RESUMO

Peptide-RNA coacervates can result in the concentration and compartmentalization of simple biopolymers. Given their primordial relevance, peptide-RNA coacervates may have also been a key site of early protein evolution. However, the extent to which such coacervates might promote or suppress the exploration of novel peptide conformations is fundamentally unknown. To this end, we used electron paramagnetic resonance spectroscopy (EPR) to characterize the structure and dynamics of an ancient and ubiquitous nucleic acid binding element, the helix-hairpin-helix (HhH) motif, alone and in the presence of RNA, with which it forms coacervates. Double electron-electron resonance (DEER) spectroscopy applied to singly labeled peptides containing one HhH motif revealed the presence of dimers, even in the absence of RNA. Moreover, dimer formation is promoted upon RNA binding and was detectable within peptide-RNA coacervates. DEER measurements of spin-diluted, doubly labeled peptides in solution indicated transient α-helical character. The distance distributions between spin labels in the dimer and the signatures of α-helical folding are consistent with the symmetric (HhH)2-Fold, which is generated upon duplication and fusion of a single HhH motif and traditionally associated with dsDNA binding. These results support the hypothesis that coacervates are a unique testing ground for peptide oligomerization and that phase-separating peptides could have been a resource for the construction of complex protein structures via common evolutionary processes, such as duplication and fusion.


Assuntos
Peptídeos , RNA , Espectroscopia de Ressonância de Spin Eletrônica , Peptídeos/química , Marcadores de Spin
8.
Phys Chem Chem Phys ; 24(47): 28878-28885, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441625

RESUMO

A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried via their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue's position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen bonding of the Tyr hydroxyl to the C-terminus carboxylate reduces this coupling. Hence, the extent of such a conductance change depends on the Tyr-carboxylate distance in the peptide's sequence.


Assuntos
Alanina , Tirosina , Ligação de Hidrogênio , Transporte de Elétrons , Peptídeos
9.
Nucleic Acids Res ; 48(4): 1701-1714, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919510

RESUMO

Replication protein A (RPA) plays a critical role in all eukaryotic DNA processing involving single-stranded DNA (ssDNA). Contrary to the notion that RPA provides solely inert protection to transiently formed ssDNA, the RPA-ssDNA complex acts as a dynamic DNA processing unit. Here, we studied the diffusion of RPA along 60 nt ssDNA using a coarse-grained model in which the ssDNA-RPA interface was modeled by both aromatic and electrostatic interactions. Our study provides direct evidence of bulge formation during the diffusion of ssDNA along RPA. Bulges can form at a few sites along the interface and store 1-7 nt of ssDNA whose release, upon bulge dissolution, leads to propagation of ssDNA diffusion. These findings thus support the reptation mechanism, which involves bulge formation linked to the aromatic interactions, whose short range nature reduces cooperativity in ssDNA diffusion. Greater cooperativity and a larger diffusion coefficient for ssDNA diffusion along RPA are observed for RPA variants with weaker aromatic interactions and for interfaces homogenously stabilized by electrostatic interactions. ssDNA propagation in the latter instance is characterized by lower probabilities of bulge formation; thus, it may fit the sliding-without-bulge model better than the reptation model. Thus, the reptation mechanism allows ssDNA mobility despite the extensive and high affinity interface of RPA with ssDNA. The short-range aromatic interactions support bulge formation while the long-range electrostatic interactions support the release of the stored excess ssDNA in the bulge and thus the overall diffusion.


Assuntos
Replicação do DNA/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteína de Replicação A/genética , Estruturas Cromossômicas/genética , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Humanos , Ligação Proteica/genética , Proteína de Replicação A/química
10.
Proc Natl Acad Sci U S A ; 116(45): 22471-22477, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628254

RESUMO

The opening of a Watson-Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/genética , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , DNA Helicases/genética , DNA Bacteriano/química , Cinética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
11.
PLoS Comput Biol ; 16(5): e1007867, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453726

RESUMO

DNA sequences are often recognized by multi-domain proteins that may have higher affinity and specificity than single-domain proteins. However, the higher affinity to DNA might be coupled with slower recognition kinetics. In this study, we address this balance between stability and kinetics for multi-domain Cys2His2- (C2H2-) type zinc-finger (ZF) proteins. These proteins are the most prevalent DNA-binding domain in eukaryotes and C2H2 type zinc-finger proteins (C2H2-ZFPs) constitute nearly one-half of all known and predicted transcription factors in human. Extensive contact with DNA via tandem ZF domains confers high stability on the sequence-specific complexes. However, this can limit target search efficiency, especially for low abundance ZFPs. Earlier, we found that asymmetrical distribution of electrostatic charge among the three ZF domains of the low abundance transcription factor Egr-1 facilitates its DNA search process. Here, on a diverse set of 273 human C2H2-ZFP comprised of 3-15 tandem ZF domains, we find that, in many cases, electrostatic charge and binding specificity are asymmetrically distributed among the ZF domains so that neighbouring domains have different DNA-binding properties. For proteins containing 3-6 ZF domains, we show that the low abundance proteins possess a higher degree of non-specific asymmetry and vice versa. Our findings suggest that where the electrostatics of tandem ZF domains are similar (i.e., symmetrical), the ZFPs are more abundant to optimize their DNA search efficiency. This study reveals new insights into the fundamental determinants of recognition by C2H2-ZFPs of their DNA binding sites in the cellular landscape. The importance of electrostatic asymmetry with respect to binding site recognition by C2H2-ZFPs suggests the possibility that it may also be important in other ZFP systems and reveals a new design feature for zinc finger engineering.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Regulação da Expressão Gênica , Dedos de Zinco , Sítios de Ligação , Proteína 1 de Resposta de Crescimento Precoce/química , Humanos , Cinética , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Fator de Transcrição YY1/química
12.
Nucleic Acids Res ; 47(11): 5530-5538, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31045207

RESUMO

The current report extends the facilitated diffusion model to account for conflict between the search and recognition binding modes adopted by DNA-binding proteins (DBPs) as they search DNA and subsequently recognize and bind to their specific binding site. The speed of the search dynamics is governed by the energetic ruggedness of the protein-DNA landscape, whereas the rate for the recognition process is mostly dictated by the free energy barrier for the transition between the DBP's search and recognition binding modes. We show that these two modes are negatively coupled, such that fast 1D sliding and rapid target site recognition probabilities are unlikely to coexist. Thus, a tradeoff occurs between optimizing the timescales for finding and binding the target site. We find that these two kinetic properties can be balanced to produce a fast timescale for the total target search and recognition process by optimizing frustration. Quantification of the facilitated diffusion model by including a frustration term enables it to explain several experimental observations concerning search and recognition speeds. The extended model captures experimental estimate of the energetic ruggedness of the protein-DNA landscape and predicts how various molecular properties of protein-DNA binding affect recognition kinetics. Particularly, point mutations may change the frustration and so affect protein association with DNA, thus providing a means to modulate protein-DNA affinity by manipulating the protein's association or dissociation reactions.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/química , DNA/química , Difusão Facilitada , Modelos Teóricos , Sítios de Ligação , DNA/genética , Proteínas de Ligação a DNA/genética , Cinética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos
13.
Biophys J ; 118(12): 3008-3018, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32492371

RESUMO

Protein diffusion in lower-dimensional spaces is used for various cellular functions. For example, sliding on DNA is essential for proteins searching for their target sites, and protein diffusion on microtubules is important for proper cell division and neuronal development. On the one hand, these linear diffusion processes are mediated by long-range electrostatic interactions between positively charged proteins and negatively charged biopolymers and have similar characteristic diffusion coefficients. On the other hand, DNA and microtubules have different structural properties. Here, using computational approaches, we studied the mechanism of protein diffusion along DNA and microtubules by exploring the diffusion of both protein types on both biopolymers. We found that DNA-binding and microtubule-binding proteins can diffuse on each other's substrates; however, the adopted diffusion mechanism depends on the molecular properties of the diffusing proteins and the biopolymers. On the protein side, only DNA-binding proteins can perform rotation-coupled diffusion along DNA, with this being due to their higher net charge and its spatial organization at the DNA recognition helix. By contrast, the lower net charge on microtubule-binding proteins enables them to diffuse more quickly than DNA-binding proteins on both biopolymers. On the biopolymer side, microtubules possess intrinsically disordered, negatively charged C-terminal tails that interact with microtubule-binding proteins, thus supporting their diffusion. Thus, although both DNA-binding and microtubule-binding proteins can diffuse on the negatively charged biopolymers, the unique molecular features of the biopolymers and of their natural substrates are essential for function.


Assuntos
DNA , Microtúbulos , Biopolímeros/metabolismo , DNA/metabolismo , Difusão , Microtúbulos/metabolismo , Ligação Proteica , Eletricidade Estática
14.
Biochemistry ; 59(51): 4822-4832, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33319999

RESUMO

DNA mismatch repair (MMR) is an important postreplication process that eliminates mispaired or unpaired nucleotides to ensure genomic replication fidelity. In humans, Msh2-Msh6 and Msh2-Msh3 are the two mismatch repair initiation factors that recognize DNA lesions. While X-ray crystal structures exist for these proteins in complex with DNA lesions, little is known about their structures during the initial search along nonspecific double-stranded DNA, because they are short-lived and difficult to determine experimentally. In this study, various computational approaches were used to sidestep these difficulties. All-atom and coarse-grained simulations based on the crystal structures of Msh2-Msh3 and Msh2-Msh6 showed no translation along the DNA, suggesting that the initial search conformation differs from the lesion-bound crystal structure. We modeled probable search-mode structures of MSH proteins and showed, using coarse-grained molecular dynamics simulations, that they can perform rotation-coupled diffusion on DNA, which is a suitable and efficient search mechanism for their function and one predicted earlier by fluorescence resonance energy transfer and fluorescence microscopy studies. This search mechanism is implemented by electrostatic interactions among the mismatch-binding domain (MBD), the clamp domains, and the DNA backbone. During simulations, their diffusion rate did not change significantly with an increasing salt concentration, which is consistent with observations from experimental studies. When the gap between their DNA-binding clamps was increased, Msh2-Msh3 diffused mostly via the clamp domains while Msh2-Msh6 still diffused using the MBD, reproducing the experimentally measured lower diffusion coefficient of Msh2-Msh6. Interestingly, Msh2-Msh3 was capable of dissociating from the DNA, whereas Msh2-Msh6 always diffused on the DNA duplex. This is consistent with the experimental observation that Msh2-Msh3, unlike Msh2-Msh6, can overcome obstacles such as nucleosomes. Our models provide a molecular picture of the different mismatch search mechanisms undertaken by Msh2-Msh6 and Msh2-Msh3, despite the similarity of their structures.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/química , Difusão , Humanos , Simulação de Dinâmica Molecular , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática
15.
PLoS Comput Biol ; 15(4): e1006768, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30933978

RESUMO

Recognition of single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) is important for many fundamental cellular functions. A variety of single-stranded DNA-binding proteins (ssDBPs) and single-stranded RNA-binding proteins (ssRBPs) have evolved that bind ssDNA and ssRNA, respectively, with varying degree of affinities and specificities to form complexes. Structural studies of these complexes provide key insights into their recognition mechanism. However, computational modeling of the specific recognition process and to predict the structure of the complex is challenging, primarily due to the heterogeneity of their binding energy landscape and the greater flexibility of ssDNA or ssRNA compared with double-stranded nucleic acids. Consequently, considerably fewer computational studies have explored interactions between proteins and single-stranded nucleic acids compared with protein interactions with double-stranded nucleic acids. Here, we report a newly developed energy-based coarse-grained model to predict the structure of ssDNA-ssDBP and ssRNA-ssRBP complexes and to assess their sequence-specific interactions and stabilities. We tuned two factors that can modulate specific recognition: base-aromatic stacking strength and the flexibility of the single-stranded nucleic acid. The model was successfully applied to predict the binding conformations of 12 distinct ssDBP and ssRBP structures with their cognate ssDNA and ssRNA partners having various sequences. Estimated binding energies agreed well with the corresponding experimental binding affinities. Bound conformations from the simulation showed a funnel-shaped binding energy distribution where the native-like conformations corresponded to the energy minima. The various ssDNA-protein and ssRNA-protein complexes differed in the balance of electrostatic and aromatic energies. The lower affinity of the ssRNA-ssRBP complexes compared with the ssDNA-ssDBP complexes stems from lower flexibility of ssRNA compared to ssDNA, which results in higher rate constants for the dissociation of the complex (koff) for complexes involving the former.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Animais , Sequência de Bases , Biologia Computacional , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Termodinâmica
16.
Phys Chem Chem Phys ; 22(34): 19368-19375, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822449

RESUMO

Proteins with intrinsically disordered regions have a tendency to condensate via liquid-liquid phase separation both in vitro and in vivo. Such biomolecular coacervates play various significant roles in biologically important regulatory processes. The present work explores the structural and dynamic features of coacervates formed by model polyampholytes, being intrinsically disordered proteins, that differ in terms of their charged amino acid patterns. Differences in the distribution of charged amino acids along the polyampholyte sequence lead to distinctly different structural features in the dense phase and hence to different liquid properties. Increased charge clustering raises the critical temperature for phase separation and results in each polyampholyte experiencing a larger number of inter-chain contacts with neighboring proteins in the condensate. Consequently, polyampholytes with greater charge clustering adopt a much more extended conformation, having a radius of gyration up to twice that observed in the dilute bulk phase. Translational diffusion within the droplet is pronounced, being just 4-20 times slower than in the bulk, consistently with the high conformational entropy in the dense phase and high exchange rate of the network of intermolecular interactions in the condensate. Coupled to the faster diffusion, the condensate also adopts a more elongated shape and exhibits imperfect packing, which results in cavities. This study quantifies the fundamental microscopic properties of condensates including the effect of long-range electrostatic forces and particularly how they can be modulated by the charge pattern.

17.
Mol Cell ; 48(4): 601-11, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23041283

RESUMO

Poorly structured domains in proteins enhance their susceptibility to proteasomal degradation. To learn whether the presence of such a domain near either end of a protein determines its direction of entry into the proteasome, directional translocation was enforced on several proteasome substrates. Using archaeal PAN-20S complexes, mammalian 26S proteasomes, and cultured cells, we identified proteins that are degraded exclusively from either the C or N terminus and some showing no directional preference. This property results from interactions of the substrate's termini with the regulatory ATPase and could be predicted based on the calculated relative stabilities of the N and C termini. Surprisingly, the direction of entry into the proteasome affected markedly the spectrum of peptides released and consequently influenced the efficiency of MHC class I presentation. Thus, easily unfolded termini are translocated first, and the direction of translocation influences the peptides generated and presented to the immune system.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Desdobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Calmodulina/química , Calmodulina/imunologia , Calmodulina/metabolismo , Caseínas/química , Caseínas/imunologia , Caseínas/metabolismo , Linhagem Celular Tumoral , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/imunologia , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Ovalbumina/química , Ovalbumina/imunologia , Ovalbumina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Transporte Proteico , Proteínas/imunologia
18.
Nucleic Acids Res ; 46(12): 5935-5949, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860305

RESUMO

Several DNA-binding proteins, such as topoisomerases, helicases and sliding clamps, have a toroidal (i.e. ring) shape that topologically traps DNA, with this quality being essential to their function. Many DNA-binding proteins that function, for example, as transcription factors or enzymes were shown to be able to diffuse linearly (i.e. slide) along DNA during the search for their target binding sites. The protein's sliding properties and ability to search DNA, which often also involves hopping and dissociation, are expected to be different when it encircles the DNA. In this study, we explored the linear diffusion of four ring-shaped proteins of very similar structure: three sliding clamps (PCNA, ß-clamp, and the gp45) and the 9-1-1 protein, with a particular focus on PCNA. Coarse-grained molecular dynamics simulations were performed to decipher the sliding mechanism adopted by these ring-shaped proteins and to determine how the molecular properties of the inner and outer ring govern its search speed. We designed in silico variants to dissect the contributions of ring geometry and electrostatics to the sliding speed of ring-shaped proteins along DNA. We found that the toroidal proteins diffuse when they are tilted relative to the DNA axis and able to rotate during translocation, but that coupling between rotation and translocation is quite weak. Their diffusion speed is affected by the shape of the inner ring and, to a lesser extent, by its electrostatic properties. However, breaking the symmetry of the electrostatic potential can result in deviation of the DNA from the center of the ring and cause slower linear diffusion. The findings are discussed in light of earlier computational and experimental studies on the sliding of clamps.


Assuntos
DNA/química , Antígeno Nuclear de Célula em Proliferação/química , Difusão , Simulação de Dinâmica Molecular , Rotação , Eletricidade Estática , Transativadores/química
19.
Biophys J ; 116(7): 1228-1238, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30904175

RESUMO

The α-helical coiled coil (CC) is a common protein motif that because of the simplicity of its sequence/structure relationship, it has been studied extensively to address fundamental questions in protein science as well as to develop strategies for designing protein with novel architectures. Nevertheless, a complete understanding of CC structures and their dynamics is still far from achieved. Particularly, spontaneous sliding at interfaces of CC proteins was observed for some systems, but its mechanism and usage as an intrinsic conformational change at CCs in protein-protein interfaces is unclear. Using coarse-grained and atomistic simulations, we study various sequences of homodimeric CC, in both parallel and antiparallel configurations. Both the strength of the hydrophobic core and the existence of salt bridges at the periphery of the interface affect sliding dynamics at the CC interface. Although the energy landscape for sliding along a CC interface is different for parallel and antiparallel configurations, both are characterized by a free energy of 1-1.5 kcal/mol, depending on the residues that constitute the CC interface. These barrier heights suggest that sliding kinetics is relatively slow in CC systems and are not expected to be of long length scale, yet they can be involved in functional motions. Our study explains the sliding that has been experimentally observed for the antiparallel CC of the dynein stalk region and the nuclear pore complex and suggests that this one-dimensional motion is an intrinsic feature in CC systems that can be involved in other CC systems.


Assuntos
Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Membrana Celular/química , Conformação Proteica em alfa-Hélice
20.
J Proteome Res ; 18(3): 1402-1410, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735617

RESUMO

Protein backbone alternation due to insertion/deletion or mutation operation often results in a change of fundamental biophysical properties of proteins. The proposed work intends to encode the protein stability changes associated with single point deletions (SPDs) of amino acids in proteins. The encoding will help in the primary screening of detrimental backbone modifications before opting for expensive in vitro experimentations. In the absence of any benchmark database documenting SPDs, we curate a data set containing SPDs that lead to both folded conformations and unfolded state. We differentiate these SPD instances with the help of simple structural and physicochemical features and eventually classify the foldability resulting out of SPDs using a Random Forest classifier and an Elliptic Envelope based outlier detector. Adhering to leave one out cross validation, the accuracy of the Random Forest classifier and the Elliptic Envelope is of 99.4% and 98.1%, respectively. The newly defined database and the delineation of SPD instances based on its resulting foldability provide a head start toward finding a solution to the given problem.


Assuntos
Aminoácidos/genética , Bases de Dados de Proteínas , Mutação Puntual/genética , Proteínas/genética , Aminoácidos/química , Biologia Computacional , Conformação Proteica , Estabilidade Proteica , Proteínas/química , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA