Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(8): 1701-1703, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557076

RESUMO

Whether soluble TREM2 has a functional role in the central nervous system has been unclear. In this issue of Immunity, Zhong et al. show that soluble TREM2 inhibits aberrant synaptic pruning by sopping up the complement factor C1q to protect neurons and mitigate neurodegeneration.


Assuntos
Microglia , Sinapses , Proteínas do Sistema Complemento , Neurônios , Complemento C1q
2.
EMBO J ; 41(4): e109108, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35019161

RESUMO

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Monócitos/metabolismo , Progranulinas/deficiência , Receptores Imunológicos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Quinase Syk/metabolismo
3.
Cell ; 144(1): 106-18, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21215373

RESUMO

The Alzheimer's disease-linked gene presenilin is required for intramembrane proteolysis of amyloid-ß precursor protein, contributing to the pathogenesis of neurodegeneration that is characterized by loss of neuronal connections, but the role of Presenilin in establishing neuronal connections is less clear. Through a forward genetic screen in mice for recessive genes affecting motor neurons, we identified the Columbus allele, which disrupts motor axon projections from the spinal cord. We mapped this mutation to the Presenilin-1 gene. Motor neurons and commissural interneurons in Columbus mutants lacking Presenilin-1 acquire an inappropriate attraction to Netrin produced by the floor plate because of an accumulation of DCC receptor fragments within the membrane that are insensitive to Slit/Robo silencing. Our findings reveal that Presenilin-dependent DCC receptor processing coordinates the interplay between Netrin/DCC and Slit/Robo signaling. Thus, Presenilin is a key neural circuit builder that gates the spatiotemporal pattern of guidance signaling, thereby ensuring neural projections occur with high fidelity.


Assuntos
Axônios/metabolismo , Neurogênese , Presenilinas/metabolismo , Animais , Embrião de Galinha , Glicoproteínas/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Presenilinas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Roundabout
4.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199568

RESUMO

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Calpaína/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Transdução de Sinais
5.
Ann Neurol ; 95(2): 211-216, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110839

RESUMO

OBJECTIVE: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS: Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Superóxido Dismutase-1 , Filamentos Intermediários , Biomarcadores , Prognóstico , Proteínas de Neurofilamentos
6.
J Neurosci ; 43(47): 7894-7898, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37968119

RESUMO

Alzheimer's disease (AD) is the major cause of dementia that is now threatening the lives of billions of elderly people on the globe, and recent progress in the elucidation of the pathomechanism of AD is now opening venue to tackle the disease by developing and implementing "disease-modifying therapies" that directly act on the pathophysiology and slow down the progression of neurodegeneration. A recent example is the success of clinical trials of anti-amyloid b antibody drugs, whereas other therapeutic targets, e.g., inflammation and tau, are being actively investigated. In this dual perspective session, we plan to have speakers from leading pharmas in the field representing distinct investments in the AD space, which will be followed by the comment from scientific leadership of the Alzheimer's Association who will speak on behalf of all stakeholders. Neuroscientists participating in the Society for Neuroscience may be able to gain insights into the cutting edge of the therapeutic approaches to AD and neurodegenerative disorders, and discuss future contribution of neuroscience to this field.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Inflamação/tratamento farmacológico , Proteínas tau
7.
Proc Natl Acad Sci U S A ; 115(44): 11244-11249, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322923

RESUMO

The E3 ubiquitin ligase CRL4COP1/DET1 is active in the absence of ERK signaling, modifying the transcription factors ETV1, ETV4, ETV5, and c-JUN with polyubiquitin that targets them for proteasomal degradation. Here we show that this posttranslational regulatory mechanism is active in neurons, with ETV5 and c-JUN accumulating within minutes of ERK activation. Mice with constitutive photomorphogenesis 1 (Cop1) deleted in neural stem cells showed abnormally elevated expression of ETV1, ETV4, ETV5, and c-JUN in the developing brain and spinal cord. Expression of c-JUN target genes Vimentin and Gfap was increased, whereas ETV5 and c-JUN both contributed to an expanded number of cells expressing genes associated with gliogenesis, including Olig1, Olig2, and Sox10. The mice had subtle morphological abnormalities in the cerebral cortex, hippocampus, and cerebellum by embryonic day 18 and died soon after birth. Elevated c-JUN, ETV5, and ETV1 contributed to the perinatal lethality, as several Cop1-deficient mice also lacking c-Jun and Etv5, or lacking Etv5 and heterozygous for Etv1, were viable.


Assuntos
Encéfalo/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo
8.
J Neurosci ; 37(46): 11074-11084, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993483

RESUMO

The c-Jun-N-terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway.SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun-N-terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of these MAP4Ks blocks stress-induced retrograde JNK signaling and protects from neurodegeneration, suggesting that these kinases may represent attractive therapeutic targets.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Células Cultivadas , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Estresse Fisiológico/efeitos dos fármacos , Quinase Induzida por NF-kappaB
9.
J Neurosci ; 35(7): 2927-41, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698732

RESUMO

Axon degeneration is a programed process that takes place during development, in response to neuronal injury, and as a component of neurodegenerative disease pathology, yet the molecular mechanisms that drive this process remain poorly defined. In this study, we have developed a semi-automated, 384-well format axon degeneration assay in rat dorsal root ganglion (DRG) neurons using a trophic factor withdrawal paradigm. Using this setup, we have screened a library of known drugs and bioactives to identify several previously unappreciated regulators of axon degeneration, including lipoxygenases. Multiple structurally distinct lipoxygenase inhibitors as well as mouse DRG neurons lacking expression of 12/15-lipoxygenase display protection of axons in this context. Retinal ganglion cell axons from 12/15-lipoxygenase-null mice were similarly protected from degeneration following nerve crush injury. Through additional mechanistic studies, we demonstrate that lipoxygenases act cell autonomously within neurons to regulate degeneration, and are required for mitochondrial permeabilization and caspase activation in the axon. These findings suggest that these enzymes may represent an attractive target for treatment of neuropathies and provide a potential mechanism for the neuroprotection observed in various settings following lipoxygenase inhibitor treatment.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Axônios/patologia , Degeneração Neural/enzimologia , Algoritmos , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Axônios/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Biblioteca Gênica , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/diagnóstico , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doenças do Nervo Óptico/complicações , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Proc Natl Acad Sci U S A ; 110(46): E4385-92, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24170856

RESUMO

Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/imunologia , Complemento C1q/metabolismo , Via Clássica do Complemento/imunologia , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Animais , Complemento C1q/genética , Deleção de Genes , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microglia/citologia , Neurônios Motores/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida
11.
Proc Natl Acad Sci U S A ; 110(10): 4039-44, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431164

RESUMO

The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of retinal ganglion cells (RGCs) and then in their cell bodies. DLK is required for the majority of gene expression changes in RGCs initiated by injury, including induction of both proapoptotic and regeneration-associated genes. Deletion of DLK in retina results in robust and sustained protection of RGCs from degeneration after optic nerve injury. Despite this improved survival, the number of axons that regrow beyond the injury site is substantially reduced, even when the tumor suppressor phosphatase and tensin homolog (PTEN) is deleted to enhance intrinsic growth potential. These findings demonstrate that these seemingly contradictory responses to injury are mechanistically coupled through a DLK-based damage detection mechanism.


Assuntos
Apoptose/fisiologia , Axônios/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Regeneração Nervosa/fisiologia , Animais , Apoptose/genética , Axônios/patologia , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Transcrição Gênica
12.
Nat Chem Biol ; 8(7): 655-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22683611

RESUMO

The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.


Assuntos
Biopolímeros/metabolismo , Caspase 6/metabolismo , Precursores Enzimáticos/metabolismo , Peptídeos/metabolismo , Regulação Alostérica , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Peptídeos/química , Ligação Proteica
13.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838131

RESUMO

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal , Camundongos Knockout , Progranulinas , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Terapia Genética , Fosforilação , Progranulinas/metabolismo , Progranulinas/genética , Receptores da Transferrina/metabolismo
14.
J Med Chem ; 67(7): 5758-5782, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38511649

RESUMO

Eukaryotic translation initiation factor 2B (eIF2B) is a key component of the integrated stress response (ISR), which regulates protein synthesis and stress granule formation in response to cellular insult. Modulation of the ISR has been proposed as a therapeutic strategy for treatment of neurodegenerative diseases such as vanishing white matter (VWM) disease and amyotrophic lateral sclerosis (ALS) based on its ability to improve cellular homeostasis and prevent neuronal degeneration. Herein, we report the small-molecule discovery campaign that identified potent, selective, and CNS-penetrant eIF2B activators using both structure- and ligand-based drug design. These discovery efforts culminated in the identification of DNL343, which demonstrated a desirable preclinical drug profile, including a long half-life and high oral bioavailability across preclinical species. DNL343 was progressed into clinical studies and is currently undergoing evaluation in late-stage clinical trials for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Leucoencefalopatias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Mutação , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Encéfalo/metabolismo , Leucoencefalopatias/metabolismo
15.
Elife ; 122024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287504

RESUMO

The integrated stress response (ISR) is a conserved pathway in eukaryotic cells that is activated in response to multiple sources of cellular stress. Although acute activation of this pathway restores cellular homeostasis, intense or prolonged ISR activation perturbs cell function and may contribute to neurodegeneration. DNL343 is an investigational CNS-penetrant small-molecule ISR inhibitor designed to activate the eukaryotic initiation factor 2B (eIF2B) and suppress aberrant ISR activation. DNL343 reduced CNS ISR activity and neurodegeneration in a dose-dependent manner in two established in vivo models - the optic nerve crush injury and an eIF2B loss of function (LOF) mutant - demonstrating neuroprotection in both and preventing motor dysfunction in the LOF mutant mouse. Treatment with DNL343 at a late stage of disease in the LOF model reversed elevation in plasma biomarkers of neuroinflammation and neurodegeneration and prevented premature mortality. Several proteins and metabolites that are dysregulated in the LOF mouse brains were normalized by DNL343 treatment, and this response is detectable in human biofluids. Several of these biomarkers show differential levels in CSF and plasma from patients with vanishing white matter disease (VWMD), a neurodegenerative disease that is driven by eIF2B LOF and chronic ISR activation, supporting their potential translational relevance. This study demonstrates that DNL343 is a brain-penetrant ISR inhibitor capable of attenuating neurodegeneration in mouse models and identifies several biomarker candidates that may be used to assess treatment responses in the clinic.


Assuntos
Fator de Iniciação 2B em Eucariotos , Animais , Camundongos , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Estresse Fisiológico/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Humanos , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Feminino , Acetamidas , Cicloexilaminas
16.
Sci Transl Med ; 16(760): eadi2245, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141703

RESUMO

Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.


Assuntos
Barreira Hematoencefálica , Oligonucleotídeos Antissenso , RNA Longo não Codificante , Receptores da Transferrina , Animais , Humanos , Camundongos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Técnicas de Silenciamento de Genes , Macaca fascicularis , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Receptores da Transferrina/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Distribuição Tecidual
17.
J Neurosci ; 32(39): 13439-53, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23015435

RESUMO

In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3ß, we show that the ß isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3ß in axon degeneration.


Assuntos
Axônios/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Neurônios/patologia , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletroporação , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genótipo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fator de Crescimento Neural/deficiência , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteína Vermelha Fluorescente
18.
Elife ; 122023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874617

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson's disease (PD) and Crohn's disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.


Lysosomes are cellular compartments tasked with breaking down large molecules such as lipids or proteins. They perform an essential role in helping cells dispose of obsolete or harmful components; in fact, defects in lysosome function are associated with a range of health conditions. For instance, many genes associated with an increased risk of developing Parkinson's disease code for proteins required for lysosomes to work properly, such as the kinase LRRK2. Previous work has shown that this enzyme gets recruited to the surface of damaged lysosomes, where it can modulate the function of another set of molecular actors by modifying them through a chemical process known as phosphorylation. Such activity is increased in harmful versions of LRRK2 linked to Parkinson's disease. However, the molecular mechanisms which control LRRK2 activity or its recruitment to lysosomes remain unclear. To examine this question, Wang, Bondar et al. first performed a targeted screen to identify proteins that can regulate LRRK2 activity. This revealed that Rab12, one of molecular actors that LRRK2 phosphorylates, can in turn modulate the activity of the enzyme. Further imaging and biochemical experiments then showed that Rab12 is recruited to damaged lysosomes and that this step was in fact necessary for LRRK2 to also relocate to these compartments. The data suggest that this Rab12-driven recruitment process increases the local concentration of LRRK2 near its Rab targets on the membrane of damaged lysosomes, and therefore leads to enhanced LRRK2 activity. Crucially, Wang, Bondar et al. showed that Rab12 also plays a role in the increased LRRK2 activity observed with two Parkinson's disease-linked mutations (one in LRRK2 itself and one in another lysosomal regulator, VPS35), suggesting that increased LRRK2 concentration on lysosomes may be a conserved mechanism that leads to increased LRRK2 activity in disease. Overall, these results highlight a new, Rab12-dependent mechanism that results in enhanced activity at the lysosomal membrane with variants associated with Parkinson's disease, and for LRRK2 in general when lysosomes are damaged. This knowledge will be helpful to develop therapeutic strategies that target LRRK2, and to better understand how increased LRRK2 activity and lysosomal injury may be linked to Parkinson's disease.


Assuntos
Fenômenos Biológicos , Lisossomos , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Humanos
19.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598178

RESUMO

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Camundongos , Distribuição Tecidual , Anticorpos , Engenharia , Macaca fascicularis
20.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226042

RESUMO

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Receptores da Transferrina , Proteínas Recombinantes de Fusão , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose II/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA