Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616227

RESUMO

Climate change and man-made pollution can have a negative impact on the establishment of Miscanthus plants in the field. This is particularly important because biomass can be produced on marginal land without conflicting with food crops. The establishment success depends on the hybrid chosen, the cultivation method, the climatic conditions, and the concentration of pollutants in the soil. There are several ways to increase the survival rate of the plants during the first growing season and after the first winter. One of them is the application of biochar and photodegradable plastic mulch, which can provide a solution for soils polluted with trace elements (TMEs). The aim of this study was to investigate the application of plastic mulch and biochar separately and in combination at the planting stage for two Miscanthus hybrids planted by the rhizome method (TV1) and seedling plugs (GNT43) on soils contaminated with trace metal elements (Pb, Cd, Zn). TV1 seems unsuitable for TME-contaminated field cultivation, as the survival rate was <60% in most treatments studied. The selected treatments did not increase the survival rate. Furthermore, the application of plastic mulch in combination with biochar resulted in a significant reduction of this parameter, regardless of the hybrid studied. The applied agrotechnology did not influence the TME accumulation in the aboveground plant parts in TV1, while Pb and Cd in GNT43 showed significantly higher values in all treatments. Contrary to expectations, biochar and plastic mulch applied separately and together neither increased survival nor reduced the accumulation of toxic TMEs during establishment on soil contaminated with TMEs and after the first growing season.

2.
Ugeskr Laeger ; 180(21)2018 May 21.
Artigo em Dinamarquês | MEDLINE | ID: mdl-29804564

RESUMO

Calcium and phosphate levels are regulated by a complex interplay between parathyroid hormone (PTH), calcitriol, fibroblast growth factor 23 (FGF23) and its co-receptor αKlotho. Kidney failure causes severe disturbances in the mineral and bone homeostasis resulting in phosphate retention, hypocalcaemia and high plasma levels of FGF23 and PTH, and the patients develop fragile bones and vascular calcifications. Today's treatments aim to lower the levels of phosphate and PTH. Future studies need to clarify, if lowering the FGF23 level or supplementation with αKlotho will improve survival for patients with chronic kidney disease.


Assuntos
Cálcio/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Fosfatos/metabolismo , Insuficiência Renal/metabolismo , Doenças Cardiovasculares/metabolismo , Fator de Crescimento de Fibroblastos 23 , Homeostase , Humanos , Proteínas Klotho , Hormônio Paratireóideo/metabolismo , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA