Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
FASEB J ; 35(5): e21590, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33871093

RESUMO

Light is the key regulator of circadian clock, the time-keeping system synchronizing organism physiology and behavior with environmental day and night conditions. In its natural habitat, the strictly subterranean naked mole-rat (Heterocephalus glaber) has lived in a light-free environment for millennia. We questioned if this species retains a circadian clock and if the patterns of this clock and concomitant rhythms differed in liver tissue from mice and naked mole-rats. As expected, in mice, the various circadian clock genes peaked at different times of the day; the Period gene (Per) group peaked in the evening, whereas Brain and Muscle ARNT-like1 (Bmal1) gene peaked in the morning; this phase shift is considered to be fundamental for circadian clock function. In sharp contrast, in the naked mole-rat both Per1 and Per2, as well as Bmal1, peaked at the same time in the morning-around ZT2-suggesting the organization of the molecular circadian oscillator was different. Moreover, gene expression rhythms associated with glucose metabolism and mTOR signaling also differed between the species. Although the activity of mTORC1 was lower, while that of mTORC2 was higher in naked mole-rat livers compared to mice, unlike that of mice where the expression profiles of glucose metabolism genes were not synchronized, these were highly synchronized in naked mole-rats and likely linked to their use of feeding times at zeitgebers.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Glucose/metabolismo , Fígado/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas CLOCK/genética , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Ratos-Toupeira , Serina-Treonina Quinases TOR/genética
2.
Physiology (Bethesda) ; 35(2): 96-111, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024425

RESUMO

Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.


Assuntos
Adaptação Fisiológica , Envelhecimento , Nanismo/fisiopatologia , Longevidade , Estresse Oxidativo , Animais , Humanos , Camundongos , Ratos-Toupeira , Especificidade da Espécie
3.
Proc Natl Acad Sci U S A ; 112(12): 3722-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775529

RESUMO

The preternaturally long-lived naked mole-rat, like other long-lived species and experimental models of extended longevity, is resistant to both endogenous (e.g., reactive oxygen species) and environmental stressors and also resists age-related diseases such as cancer, cardiovascular disease, and neurodegeneration. The mechanisms behind the universal resilience of longer-lived organisms to stress, however, remain elusive. We hypothesize that this resilience is linked to the activity of a highly conserved transcription factor, nuclear factor erythroid 2-related factor (Nrf2). Nrf2 regulates the transcription of several hundred cytoprotective molecules, including antioxidants, detoxicants, and molecular chaperones (heat shock proteins). Nrf2 itself is tightly regulated by mechanisms that either promote its activity or increase its degradation. We used a comparative approach and examined Nrf2-signaling activity in naked mole-rats and nine other rodent species with varying maximum lifespan potential (MLSP). We found that constitutive Nrf2-signaling activity was positively correlated (P = 0.0285) with MLSP and that this activity was also manifested in high levels of downstream gene expression and activity. Surprisingly, we found that species longevity was not linked to the protein levels of Nrf2 itself, but rather showed a significant (P < 0.01) negative relationship with the regulators Kelch-like ECH-Associated Protein 1 (Keap1) and ß-transducin repeat-containing protein (ßTrCP), which target Nrf2 for degradation. These findings highlight the use of a comparative biology approach for the identification of evolved mechanisms that contribute to health span, aging, and longevity.


Assuntos
Regulação da Expressão Gênica , Longevidade , Fator 2 Relacionado a NF-E2/fisiologia , Transdução de Sinais , Animais , Cricetinae , Feminino , Gerbillinae , Cobaias , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Xenobióticos , Proteínas Contendo Repetições de beta-Transducina/fisiologia
4.
Mamm Genome ; 27(7-8): 259-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27364349

RESUMO

Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms.


Assuntos
Envelhecimento/genética , Genoma , Genômica , Longevidade/genética , Animais , Mamíferos/genética , Ratos-Toupeira , Anotação de Sequência Molecular , Ratos , Especificidade da Espécie , Transcriptoma/genética
5.
Am J Physiol Endocrinol Metab ; 303(8): E1061-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22932781

RESUMO

Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Condicionamento Físico Animal/fisiologia , Tecido Adiposo/metabolismo , Animais , Peso ao Nascer/fisiologia , Glicemia/metabolismo , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Desoxiglucose/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Lactação/fisiologia , Tamanho da Ninhada de Vivíparos/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/metabolismo , Gravidez , Corrida/fisiologia
6.
Gerontology ; 58(5): 453-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572398

RESUMO

BACKGROUND: Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ~8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. OBJECTIVES: We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. RESULTS: Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD(50) values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. CONCLUSION: Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and progression of physiological declines that characterize the aging process.


Assuntos
Envelhecimento/fisiologia , Ratos-Toupeira/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Longevidade/fisiologia , Metais Pesados/toxicidade , Camundongos , Modelos Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Especificidade da Espécie , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
7.
Proc Natl Acad Sci U S A ; 105(7): 2325-30, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18287083

RESUMO

Caloric restriction (CR) is the most potent intervention known to both protect against carcinogenesis and extend lifespan in laboratory animals. A variety of anticarcinogens and CR mimetics induce and activate the NF-E2-related factor 2 (Nrf2) pathway. Nrf2, in turn, induces a number of antioxidative and carcinogen-detoxifying enzymes. Thus, Nrf2 offers a promising target for anticarcinogenesis and antiaging interventions. We used Nrf2-disrupted (KO) mice to examine its role on the biological effects of CR. Here, we show that Nrf2 is responsible for most of the anticarcinogenic effects of CR, but is dispensable for increased insulin sensitivity and lifespan extension. Nrf2-deficient mice developed tumors more readily in response to carcinogen exposure than did WT mice, and CR was ineffective in suppressing tumors in the KO mice. However, CR extended lifespan and increased insulin sensitivity similarly in KO and WT mice. These findings identify a molecular pathway that dissociates the prolongevity and anticarcinogenic effects of CR.


Assuntos
Restrição Calórica , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Animais , Regulação da Expressão Gênica , Insulina/metabolismo , Longevidade/fisiologia , Camundongos , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Sensibilidade e Especificidade , Taxa de Sobrevida
8.
Sci Rep ; 10(1): 6966, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332849

RESUMO

The naked mole-rat is a subterranean rodent, approximately the size of a mouse, renowned for its exceptional longevity (>30 years) and remarkable resistance to cancer. To explore putative mechanisms underlying the cancer resistance of the naked mole-rat, we investigated the regulation and function of the most commonly mutated tumor suppressor, TP53, in the naked mole-rat. We found that the p53 protein in naked mole-rat embryonic fibroblasts (NEFs) exhibits a half-life more than ten times in excess of the protein's characterized half-life in mouse and human embryonic fibroblasts. We determined that the long half-life of the naked mole-rat p53 protein reflects protein-extrinsic regulation. Relative to mouse and human p53, a larger proportion of naked mole-rat p53 protein is constitutively localized in the nucleus prior to DNA damage. Nevertheless, DNA damage is sufficient to induce activation of canonical p53 target genes in NEFs. Despite the uniquely long half-life and unprecedented basal nuclear localization of p53 in NEFs, naked mole-rat p53 retains its canonical tumor suppressive activity. Together, these findings suggest that the unique stabilization and regulation of the p53 protein may contribute to the naked mole-rat's remarkable resistance to cancer.


Assuntos
Núcleo Celular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Dano ao DNA/fisiologia , Feminino , Imunofluorescência , Humanos , Masculino , Camundongos , Ratos-Toupeira , Estabilidade Proteica
9.
Geroscience ; 42(4): 1147-1155, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394346

RESUMO

The goal of the current study was to determine the role of maternal diet in the perinatal period on the health and survival of the offspring. AKR/J mice, a model described to be susceptible to leukemia development, was used where females were maintained on either standard diet (SD), high sucrose diet, Western diet, or calorie restriction (CR) as they were mated with SD-fed males. Body weights, pregnancy rates, litter size, and litter survival were used as markers of successful pregnancy and pup health. Data indicated that maternal diet had significant effects on litter size, early pup survival, and early pup body weights. As pups matured, the makeup of their respective maternal diet was a predictor of adult metabolic health and survival. Overall, these results suggest that perinatal maternal diet is an important determinant of the health and survival of the offspring and that these effects continue well into adulthood, strongly correlating with lifespan.


Assuntos
Dieta , Leucemia , Animais , Peso Corporal , Feminino , Masculino , Camundongos , Gravidez , Reprodução
10.
Geroscience ; 40(3): 357-358, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29855760

RESUMO

The original version of this article unfortunately contained an error.

11.
Geroscience ; 40(2): 105-121, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29679203

RESUMO

Mouse-sized naked mole-rats (Heterocephalus glaber), unlike other mammals, do not conform to Gompertzian laws of age-related mortality; adults show no age-related change in mortality risk. Moreover, we observe negligible hallmarks of aging with well-maintained physiological and molecular functions, commonly altered with age in other species. We questioned whether naked mole-rats, living an order of magnitude longer than laboratory mice, exhibit different plasma metabolite profiles, which could then highlight novel mechanisms or targets involved in disease and longevity. Using a comprehensive, unbiased metabolomics screen, we observe striking inter-species differences in amino acid, peptide, and lipid metabolites. Low circulating levels of specific amino acids, particularly those linked to the methionine pathway, resemble those observed during the fasting period at late torpor in hibernating ground squirrels and those seen in longer-lived methionine-restricted rats. These data also concur with metabolome reports on long-lived mutant mice, including the Ames dwarf mice and calorically restricted mice, as well as fruit flies, and even show similarities to circulating metabolite differences observed in young human adults when compared to older humans. During evolution, some of these beneficial nutrient/stress response pathways may have been positively selected in the naked mole-rat. These observations suggest that interventions that modify the aging metabolomic profile to a more youthful one may enable people to lead healthier and longer lives.


Assuntos
Envelhecimento/metabolismo , Longevidade/fisiologia , Metabolômica/métodos , Estresse Oxidativo/fisiologia , Animais , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ratos-Toupeira , Ratos , Especificidade da Espécie
12.
Ann N Y Acad Sci ; 1363: 155-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26995762

RESUMO

Methionine restriction is a widely reported intervention for increasing life span in several model organisms. Low circulating levels of methionine are evident in the long-lived naked mole-rat, suggesting that it naturally presents with a life-extending phenotype akin to that observed in methionine-restricted animals. Similarly, long-lived dwarf mice also appear to have altered methionine metabolism. The mechanisms underlying methionine-restriction effects on life-span extension, however, remain unknown, as do their potential connections with caloric restriction, another well-established intervention for prolonging life span. Paradoxically, methionine is enriched in proteins expressed in mitochondria and may itself serve an important role in the detoxification of reactive oxygen species and may thereby contribute to delayed aging. Collectively, we highlight the evidence that modulation of the methionine metabolic network can extend life span-from yeast to humans-and explore the evidence that sulfur amino acids and the concomitant transsulfuration pathway play a privileged role in this regard. However, systematic studies in single organisms (particularly those that exhibit extreme longevity) are still required to distinguish the fundamental principles concerning the role of methionine and other amino acids in regulating life span.


Assuntos
Restrição Calórica , Expectativa de Vida , Longevidade , Metionina/metabolismo , Leveduras , Envelhecimento , Animais , Cisteína/metabolismo , Células Eucarióticas/fisiologia , Humanos , Invertebrados , Redes e Vias Metabólicas , Modelos Animais , Roedores , Leveduras/fisiologia
13.
Cell Metab ; 22(2): 332-43, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26244935

RESUMO

Biological diversity among mammals is remarkable. Mammalian body weights range seven orders of magnitude and lifespans differ more than 100-fold among species. While genetic, dietary, and pharmacological interventions can be used to modulate these traits in model organisms, it is unknown how they are determined by natural selection. By profiling metabolites in brain, heart, kidney, and liver tissues of 26 mammalian species representing ten taxonomical orders, we report metabolite patterns characteristic of organs, lineages, and species longevity. Our data suggest different rates of metabolite divergence across organs and reveal patterns representing organ-specific functions and lineage-specific physiologies. We identified metabolites that correlated with species lifespan, some of which were previously implicated in longevity control. We also compared the results with metabolite changes in five long-lived mouse models and observed some similar patterns. Overall, this study describes adjustments of the mammalian metabolome according to lifespan, phylogeny, and organ and lineage specialization.


Assuntos
Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Longevidade/fisiologia , Mamíferos/metabolismo , Metaboloma/fisiologia , Miocárdio/metabolismo , Animais , Camundongos , Especificidade de Órgãos , Especificidade da Espécie
14.
Antioxid Redox Signal ; 19(12): 1388-99, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-23025341

RESUMO

SIGNIFICANCE: The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. RECENT ADVANCES: In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. CRITICAL ISSUES: In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. FUTURE DIRECTIONS: Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.


Assuntos
Envelhecimento , Ratos-Toupeira/fisiologia , Estresse Oxidativo , Animais , Glutationa/metabolismo , Humanos , Longevidade , Oxirredução , Oxirredutases/fisiologia , Especificidade da Espécie
15.
Curr Pharm Des ; 17(22): 2290-307, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21736541

RESUMO

Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.


Assuntos
Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia/genética , Autofagia/fisiologia , Enzimas/genética , Humanos , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Modelos Genéticos , Ratos-Toupeira , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Polimorfismo Genético , Ratos , Especificidade da Espécie
16.
Integr Comp Biol ; 50(5): 829-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21031035

RESUMO

Although aging is a ubiquitous process that prevails in all organisms, the mechanisms governing both the rate of decline in functionality and the age of onset remain elusive. A profound constitutively upregulated cytoprotective response is commonly observed in naturally long-lived species and experimental models of extensions to lifespan (e.g., genetically-altered and/or experimentally manipulated organisms), as indicated by enhanced resistance to stress and upregulated downstream components of the cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2)-signaling pathway. The transcription factor Nrf2 is constitutively expressed in all tissues, although levels may vary among organs, with the key detoxification organs (kidney and liver) exhibiting highest levels. Nrf2 may be further induced by cellular stressors including endogenous reactive-oxygen species or exogenous electrophiles. The Nrf2-signaling pathway mediates multiple avenues of cytoprotection by activating the transcription of more than 200 genes that are crucial in the metabolism of drugs and toxins, protection against oxidative stress and inflammation, as well as playing an integral role in stability of proteins and in the removal of damaged proteins via proteasomal degradation or autophagy. Nrf2 interacts with other important cell regulators such as tumor suppressor protein 53 (p53) and nuclear factor-kappa beta (NF-κB) and through their combined interactions is the guardian of healthspan, protecting against many age-related diseases including cancer and neurodegeneration. We hypothesize that this signaling pathway plays a critical role in the determination of species longevity and that this pathway may indeed be the master regulator of the aging process.


Assuntos
Longevidade/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia
17.
Cell Metab ; 8(2): 157-68, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18599363

RESUMO

A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.


Assuntos
Envelhecimento/efeitos dos fármacos , Restrição Calórica , Ingestão de Energia/genética , Longevidade/efeitos dos fármacos , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Privação de Alimentos/fisiologia , Alimentos Formulados , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Resveratrol , Estilbenos/uso terapêutico , Transcrição Gênica/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA