Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 46(8): 626-629, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34210544

RESUMO

Recent advances in high-resolution structural studies of protein amyloids have revealed parallel in-register cross-ß-sheets with periodic arrays of closely spaced identical residues. What do these structures tell us about the mechanisms of action of common amyloid-promoting factors, such as heparan sulfate (HS), nucleic acids, polyphosphates, anionic phospholipids, and acidic pH?


Assuntos
Amiloide
2.
Cell Mol Life Sci ; 80(12): 376, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010414

RESUMO

Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-ß (Aß) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aß1-40 and Aß1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aß aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aß aggregation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteínas E , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo
3.
Biomater Sci ; 12(17): 4275-4282, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39046441

RESUMO

Amyloid diseases including Alzheimer's, Parkinson's and over 30 others are incurable life-threatening disorders caused by abnormal protein deposition as fibrils in various organs. Cardiac amyloidosis is particularly challenging to diagnose and treat. Identification of the fibril-forming protein, which in the heart is usually amyloid transthyretin (ATTR) or amyloid immunoglobulin light chain (AL), is paramount to treatment. A transformative non-invasive diagnostic modality is imaging using technetium-labeled pyrophosphate or diphosphonate bone tracers, 99mTc-PYP/DPD/HMDP. For unknown reasons, these tracers show preferential uptake by ATTR deposits. The tracer-binding moiety is unknown and potentially involves amyloid fibrils and/or amyloid-associated calcific deposits. We propose that, like in the bone, the tracers chelate to surface-bound Ca2+ in amyloid. In high-affinity protein sites, Ca2+ is coordinated by pairs of acidic residues. To identify such residues on amyloids, we harnessed atomic structures of patient-derived cardiac amyloids determined using cryogenic electron microscopy since 2019. These structures help explain why most but not all ATTR deposits uptake 99mTc-PYP/DPD/HMDP radiotracers, while in AL the opposite is true. Moreover, fibril structures help explain greater microcalcification observed in ATTR vs. AL deposits. These findings may aid the diagnostics and therapeutic targeting of cardiac amyloidosis and are relevant to other amyloids.


Assuntos
Amiloide , Humanos , Amiloide/metabolismo , Amiloide/química , Osso e Ossos/metabolismo , Osso e Ossos/diagnóstico por imagem , Amiloidose/metabolismo , Amiloidose/diagnóstico por imagem , Amiloidose/diagnóstico , Pré-Albumina/química , Pré-Albumina/metabolismo , Miocárdio/metabolismo , Cálcio/metabolismo
4.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577501

RESUMO

Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-ß (Aß) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aß1-40 and Aß1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aß aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aß aggregation.

5.
Biophys Chem ; 280: 106699, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773861

RESUMO

Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloide/química , Proteínas Amiloidogênicas , Amiloidose/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA