RESUMO
Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.
Assuntos
Heterocromatina , Histonas , Animais , Camundongos , Histonas/genética , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cromatina , Células-Tronco Embrionárias/metabolismoRESUMO
Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.
Assuntos
Imunoprecipitação da Cromatina/métodos , Regulação da Expressão Gênica , Elementos Isolantes/fisiologia , RNA Polimerase II/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Olho/metabolismo , Redes Reguladoras de Genes , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Chromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites. Biochemical purification identifies the H3K36 histone methyltransferase NSD/dMes-4 as a novel IBP cofactor, which specifically co-regulates the chromatin accessibility of hundreds of genes flanked by dCTCF/Beaf32. NSD/dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-dependent H3K36 trimethylation, nucleosome positioning, and RNA splicing. Our results unveil a model for how IBPs regulate nucleosome dynamics and gene expression through NSD/dMes-4, which may regulate H3K27me3 spreading. Our data uncover how IBPs dynamically regulate chromatin organization depending on distinct cofactors.
Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Elementos Isolantes/genética , Modelos Biológicos , Nucleossomos/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Análise de Componente Principal , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Técnicas do Sistema de Duplo-HíbridoRESUMO
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modelling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, however CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to be reprogrammed. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
RESUMO
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
RESUMO
Cell type-specific barcoding of genomes requires the establishment of hundreds of heterochromatin domains where heterochromatin-associated repressive complexes hinder chromatin accessibility thereby silencing genes. At heterochromatin-euchromatin borders, regulation of accessibility not only depends on the delimitation of heterochromatin but may also involve interplays with nearby genes and their transcriptional activity, or alternatively on histone modifiers, chromatin barrier insulators, and more global demarcation of chromosomes into 3D compartmentalized domains and topological-associating domain (TADs). Here, we show that depletion of H3K36 di- or tri-methyl histone methyltransferases dMes-4/NSD or Hypb/dSet2 induces reproducible increasing levels of H3K27me3 at heterochromatin borders including in nearby promoters, thereby repressing hundreds of genes. Furthermore, dMes-4/NSD influences genes demarcated by insulators and TAD borders, within chromatin hubs, unlike transcription-coupled action of Hypb/dSet2 that protects genes independently of TADs. Insulator mutants recapitulate the increase of H3K27me3 upon dMes-4/NSD depletion unlike Hypb/dSet2. Hi-C data demonstrate how dMes-4/NSD blocks propagation of long-range interactions onto active regions. Our data highlight distinct mechanisms protecting genes from H3K27me3 silencing, highlighting a direct influence of H3K36me on repressive TADs.
Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/genética , Heterocromatina/genética , Montagem e Desmontagem da CromatinaRESUMO
DNA methylation is thought to regulate accessibility of chromatin and binding of regulatory elements; however, it is difficult to determine if chromatin accessibility or transcription factor (TF) binding overlap with methylated or unmethylated DNA if the assays are performed separately. In order to examine accessibility or TF binding simultaneously with methylation on the same DNA molecule, we developed EpiMethylTag which combines ATAC-Seq or ChIP-Seq (M-ATAC or M-ChIP) with bisulfite conversion. Our approach provides a fast, low-input, low sequencing depth method to determine whether DNAme and accessibility/TF binding are mutually exclusive or can coexist in certain locations.
Assuntos
Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ilhas de CpG , Elementos de DNA Transponíveis , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The molecular mechanisms leading to the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL) have been only in part elucidated. To identify new culprits which promote and drive ALCL, we performed a total transcriptome sequencing and discovered 1208 previously unknown intergenic long noncoding RNAs (lncRNAs), including 18 lncRNAs preferentially expressed in ALCL. We selected an unknown lncRNA, BlackMamba, with an ALK- ALCL preferential expression, for molecular and functional studies. BlackMamba is a chromatin-associated lncRNA regulated by STAT3 via a canonical transcriptional signaling pathway. Knockdown experiments demonstrated that BlackMamba contributes to the pathogenesis of ALCL regulating cell growth and cell morphology. Mechanistically, BlackMamba interacts with the DNA helicase HELLS controlling its recruitment to the promoter regions of cell-architecture-related genes, fostering their expression. Collectively, these findings provide evidence of a previously unknown tumorigenic role of STAT3 via a lncRNA-DNA helicase axis and reveal an undiscovered role for lncRNA in the maintenance of the neoplastic phenotype of ALK-ALCL.
Assuntos
Quinase do Linfoma Anaplásico/deficiência , DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Fenótipo , RNA Longo não Codificante , Biópsia , Linhagem Celular Tumoral , Proliferação de Células , Evolução Clonal , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , MicroRNAs/genética , Modelos Biológicos , Regiões Promotoras Genéticas , Interferência de RNARESUMO
Mutations in genes involved in DNA methylation (DNAme; for example, TET2 and DNMT3A) are frequently observed in hematological malignancies1-3 and clonal hematopoiesis4,5. Applying single-cell sequencing to murine hematopoietic stem and progenitor cells, we observed that these mutations disrupt hematopoietic differentiation, causing opposite shifts in the frequencies of erythroid versus myelomonocytic progenitors following Tet2 or Dnmt3a loss. Notably, these shifts trace back to transcriptional priming skews in uncommitted hematopoietic stem cells. To reconcile genome-wide DNAme changes with specific erythroid versus myelomonocytic skews, we provide evidence in support of differential sensitivity of transcription factors due to biases in CpG enrichment in their binding motif. Single-cell transcriptomes with targeted genotyping showed similar skews in transcriptional priming of DNMT3A-mutated human clonal hematopoiesis bone marrow progenitors. These data show that DNAme shapes the topography of hematopoietic differentiation, and support a model in which genome-wide methylation changes are transduced to differentiation skews through biases in CpG enrichment of the transcription factor binding motif.
Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Hematopoese/genética , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Transcrição Gênica/genética , Transcriptoma/genéticaRESUMO
CTCF and cohesin play a key role in organizing chromatin into topologically associating domain (TAD) structures. Disruption of a single CTCF binding site is sufficient to change chromosomal interactions leading to alterations in chromatin modifications and gene regulation. However, the extent to which alterations in chromatin modifications can disrupt 3D chromosome organization leading to transcriptional changes is unknown. In multiple myeloma, a 4;14 translocation induces overexpression of the histone methyltransferase, NSD2, resulting in expansion of H3K36me2 and shrinkage of antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of NSD2, here we find oncogene activation is linked to alterations in H3K27ac and CTCF within H3K36me2 enriched chromatin. A logistic regression model reveals that differentially expressed genes are significantly enriched within the same insulated domain as altered H3K27ac and CTCF peaks. These results identify a bidirectional relationship between 2D chromatin and 3D genome organization in gene regulation.
Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Mieloma Múltiplo/genética , Proteínas Repressoras/genética , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Expressão Gênica/genética , Humanos , Modelos Logísticos , CoesinasRESUMO
Activation of regulatory elements is thought to be inversely correlated with DNA methylation levels. However, it is difficult to determine whether DNA methylation is compatible with chromatin accessibility or transcription factor (TF) binding if assays are performed separately. We developed a fast, low-input, low sequencing depth method, EpiMethylTag, that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA. Here we demonstrate that EpiMethylTag can be used to study the functional interplay between chromatin accessibility and TF binding (CTCF and KLF4) at methylated sites.
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA , Genômica/métodos , Animais , Cromatina/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/metabolismoRESUMO
The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy.