RESUMO
By combining kinetics and theoretical calculations, we show here the benefits of going beyond the concept of static localized and defined active sites on solid catalysts, into a system that globally and dynamically considers the active site located in an environment that involves a scaffold structure particularly suited for a target reaction. We demonstrate that such a system is able to direct the reaction through a preferred mechanism when two of them are competing. This is illustrated here for an industrially relevant reaction, the diethylbenzene-benzene transalkylation. The zeolite catalyst (ITQ-27) optimizes location, density, and environment of acid sites to drive the reaction through the preselected and preferred diaryl-mediated mechanism, instead of the alkyl transfer pathway. This is achieved by minimizing the activation energy of the selected pathway through weak interactions, much in the way that it occurs in enzymatic catalysts. We show that ITQ-27 outperforms previously reported zeolites for the DEB-Bz transalkylation and, more specifically, industrially relevant zeolites such as faujasite, beta, and mordenite.
RESUMO
Subnanometric metal species (single atoms and clusters) have been demonstrated to be unique compared with their nanoparticulate counterparts. However, the poor stabilization of subnanometric metal species towards sintering at high temperature (>500 °C) under oxidative or reductive reaction conditions limits their catalytic application. Zeolites can serve as an ideal support to stabilize subnanometric metal catalysts, but it is challenging to localize subnanometric metal species on specific sites and modulate their reactivity. We have achieved a very high preference for localization of highly stable subnanometric Pt and PtSn clusters in the sinusoidal channels of purely siliceous MFI zeolite, as revealed by atomically resolved electron microscopy combining high-angle annular dark-field and integrated differential phase contrast imaging techniques. These catalysts show very high stability, selectivity and activity for the industrially important dehydrogenation of propane to form propylene. This stabilization strategy could be extended to other crystalline porous materials.
RESUMO
The methanol-to-olefins reaction catalyzed by small-pore cage-based acid zeolites and zeotypes produces a mixture of short chain olefins, whose selectivity to ethene, propene and butene varies with the cavity architecture and with the framework composition. The product distribution of aluminosilicates and silicoaluminophosphates with the CHA and AEI structures (H-SSZ-13, H-SAPO-34, H-SSZ-39 and H-SAPO-18) has been experimentally determined, and the impact of acidity and framework flexibility on the stability of the key cationic intermediates involved in the mechanism and on the diffusion of the olefin products through the 8r windows of the catalysts has been evaluated by means of periodic DFT calculations and ab initio molecular dynamics simulations. The preferential stabilization by confinement of fully methylated hydrocarbon pool intermediates favoring the paring pathway is the main factor controlling the final olefin product distribution.
RESUMO
From theoretical calculations and a rational synthesis methodology, it has been possible to prepare nanocrystalline (60-80â nm) chabazite with an optimized framework Al distribution that has a positive impact on its catalytic properties. This is exemplified for the methanol-to-olefin (MTO) process. The nanosized material with the predicted Al distribution maximizes the formation of the required MTO hydrocarbon pool intermediates, while better precluding excessive diffusion pathways that favor the rapid catalyst deactivation by coke formation.
RESUMO
Since the early reports by Barrer in the 1940s on converting natural minerals into synthetic zeolites, the use of precrystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physicochemical properties has become a very important research field, allowing the design, particularly in recent years, of new industrial catalysts. This Review highlights how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites with similar SBUs or layers, but also permits control over important parameters affecting their catalytic activity (chemical composition, crystal size, or porosity, etc.). Recent advances in the preparation of 3D and 2D zeolites through seeding and zeolite-to-zeolite transformation processes will be discussed extensively in this Review, including their preparation in the presence or absence of organic structure-directing agents (OSDAs). The aim is to introduce general guidelines for more efficient approaches for target zeolites.
RESUMO
Subnanometric PtIn clusters have been synthesized within pure silica MFI zeolites by post-synthetic incorporation of In to Pt@K-MFI. The optimized PtIn@K-MFI catalyst outcompetes state-of-the-art PtSn formulations in ethane and propane dehydrogenations, avoiding the need of large excess of Pt promoters and harsh reductive conditions.
RESUMO
Approaching the level of molecular recognition of enzymes with solid catalysts is a challenging goal, achieved in this work for the competing transalkylation and disproportionation of diethylbenzene catalyzed by acid zeolites. The key diaryl intermediates for the two competing reactions only differ in the number of ethyl substituents in the aromatic rings, and therefore finding a selective zeolite able to recognize this subtle difference requires an accurate balance of the stabilization of reaction intermediates and transition states inside the zeolite microporous voids. In this work we present a computational methodology that, by combining a fast high-throughput screeening of all zeolite structures able to stabilize the key intermediates with a more computationally demanding mechanistic study only on the most promising candidates, guides the selection of the zeolite structures to be synthesized. The methodology presented is validated experimentally and allows to go beyond the conventional criteria of zeolite shape-selectivity.
RESUMO
Zeolites containing Rh single sites stabilized by phosphorous were prepared through a one-pot synthesis method and are shown to have superior activity and selectivity for ethylene hydroformylation at low temperature (50 °C). Catalytic activity is ascribed to confined Rh2O3 clusters in the zeolite which evolve under reaction conditions into single Rh3+ sites. These Rh3+ sites are effectively stabilized in a Rh-(O)-P structure by using tetraethylphosphonium hydroxide as a template, which generates in situ phosphate species after H2 activation. In contrast to Rh2O3, confined Rh0 clusters appear less active in propanal production and ultimately transform into Rh(I)(CO)2 under similar reaction conditions. As a result, we show that it is possible to reduce the temperature of ethylene hydroformylation with a solid catalyst down to 50 °C, with good activity and high selectivity, by controlling the electronic and morphological properties of Rh species and the reaction conditions.
RESUMO
A hierarchical titanosilicate, with epitaxially grown MFI nanosheets on microsized TS-1 crystals, has been prepared through a desilication-recrystallization method using a diammonium surfactant as the secondary structure-directing agent (SDA). This core/shell material features multiple mesoporosities, significantly improved epoxidation activity as well as easy separation in synthesis and catalytic reactions.
RESUMO
A novel organic-inorganic layered titanosilicate consisting of Ti-containing MWW-type nanosheets and piperidine ligands was constructed. It exhibited an unprecedented high catalytic activity and recyclability in alkene epoxidation.
RESUMO
Organic-inorganic hybrid zeolites with the MFI-type lamellar structure serve as efficient solid Lewis base catalysts for solvent-free synthesis of a variety of cyclic carbonates from corresponding epoxides and carbon dioxide. The ion-exchange with iodide, in particular, renders these materials an excellent catalytic activity and good recyclability.