Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 316(5): H971-H984, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735072

RESUMO

Fatty acid-binding protein 3 (FABP3), a low-molecular-weight protein, participates in lipid transportation, storage, signaling transduction, oxidation, and transcription regulation. Here, we investigated the expression and function of FABP3 in ischemic heart diseases and explored the mechanisms by which FABP3 affected remodeling after myocardial infarction (MI). We showed that ischemic or hypoxic conditions upregulated FABP3 expression in vivo and in vitro. Notably, overexpression of FABP3 induced more myocyte apoptosis in the infarction and border areas and aggravated cardiac dysfunction, with lower left ventricular ejection fraction. Meanwhile, overexpression of FABP3 drastically promoted death and apoptosis of neonatal rat ventricular cardiomyocytes under hypoxia. Furthermore, deficiency of FABP3 exerted protective effects against ischemic heart injuries by decreasing cardiac myocyte apoptosis and heart remodeling after MI. We found that overexpression of FABP3 upregulated the phosphorylation of MAPK signaling pathway and decreased phosphorylated Akt levels, which may account for the augmentation of apoptosis and remodeling after MI. To the best of our knowledge, this is the first study to demonstrate that deficiency of FABP3 would protect cardiac myocytes from apoptosis and alleviate cardiac remodeling after MI, suggesting FABP3 as a potential target to preserve cardiac function after MI. NEW & NOTEWORTHY It is an undisputable fact that myocyte apoptosis plays a crucial role in cardiac remodeling and the development of heart failure after myocardial infarction. Here, fatty acid-binding protein 3 deficiency improved myocardial structural remodeling and function by decreasing cell apoptosis and regulating MAPK signaling pathways. We suppose that fatty acid-binding protein 3 may be regarded as a potential intervention approach to preserve cardiomyocytes during myocardial infarction.


Assuntos
Apoptose , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo/deficiência , Proteína 3 Ligante de Ácido Graxo/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Ratos , Transdução de Sinais , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular
2.
Front Cardiovasc Med ; 8: 722908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458345

RESUMO

Background: Cardiac hypertrophy was accompanied by various cardiovascular diseases (CVDs), and due to the high global incidence and mortality of CVDs, it has become increasingly critical to characterize the pathogenesis of cardiac hypertrophy. We aimed to determine the metabolic roles of fatty acid binding protein 3 (FABP3) on transverse aortic constriction (TAC)-induced cardiac hypertrophy. Methods and Results: Transverse aortic constriction or Ang II treatment markedly upregulated Fabp3 expression. Notably, Fabp3 ablation aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction. Multi-omics analysis revealed that Fabp3-deficient hearts exhibited disrupted metabolic signatures characterized by increased glycolysis, toxic lipid accumulation, and compromised fatty acid oxidation and ATP production under hypertrophic stimuli. Mechanistically, FABP3 mediated metabolic reprogramming by directly interacting with PPARα, which prevented its degradation and synergistically modulated its transcriptional activity on Mlycd and Gck. Finally, treatment with the PPARα agonist, fenofibrate, rescued the pro-hypertrophic effects of Fabp3 deficiency. Conclusions: Collectively, these findings reveal the indispensable roles of the FABP3-PPARα axis on metabolic homeostasis and the development of hypertrophy, which sheds new light on the treatment of hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA