Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Monit Assess ; 190(5): 294, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29671073

RESUMO

Biochar is widely considered as a soil amendment. This study aims to investigate the leaching of macronutrients (K, Mg and Ca) and organics from biochars produced from mallee biomass (wood, leaf, bark) in a fluidised-bed pyrolyser at 500 °C. Biochars were soaked in solutions of varying pH values and shaken for a pre-set period of time ranging from 1 h to 4 weeks. The initial pH values of the leaching solutions used (3.4, 5.5, 7 and 8.5) covered the pH range of the soils in the Wheatbelt region of Western Australia (WA). For these bark, leaf and wood biochars, we can conclude that the biochars have a liming capacity for the acid soils of the WA Wheatbelt, depending on the feedstock. The maximum leachabilities and leaching kinetics of the macronutrients K, Mg and Ca depend on the pH of the solution in which biochar was soaked. Apparently, Ca, K and Mg in biomass are converted into different species upon pyrolysis, and the biomass species are critical for the extent of the leachability of macronutrients. Further, the chemical form of each nutrient retained in the biochars will dictate the kinetics as a function of soil pH. This study's GC/MS analysis of solvent extraction of the biochars showed potential toxicity due to the leaching of light organic compounds when biochars are added to soils. Furthermore, this study also showed the influence of pH on the leaching of large aromatic organics from the biochars. Apart from the pH of leaching solution, the influence of the biomass feedstock on the leaching kinetics of large aromatic organics from biochars was demonstrated. These leached aromatic organics were characterised by UV-fluorescence spectroscopy.


Assuntos
Carvão Vegetal/química , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Folhas de Planta/química , Solo/química , Madeira/química , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Temperatura , Austrália Ocidental
2.
Acta Pharmacol Sin ; 38(1): 110-119, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27641735

RESUMO

Previous studies have shown that microRNA-1304 (miR-1304) is dysregulated in certain types of cancers, including non-small cell lung cancer (NSCLC), and might be involved in tumor survival and/or growth. In this study we investigated the direct target of miR-1304 and its function in NSCLC in vitro. Human lung adenocarcinoma cell lines (A549 and NCI-H1975) were studied. The cell proliferation and survival were investigated via cell counting, MTT and colony-formation assays. Cell apoptosis and cell cycle were examined using annexin V-PE/7-AAD and PI staining assays, respectively. The dual-luciferase reporter assay was used to verify post-transcriptional regulation of heme oxygenase-1 (HO-1) by miR-1304. CRISPR/Cas9 was used to deplete endogenous miR-1304. Overexpression of MiR-1304 significantly decreased the number and viability of NSCLC cells and colony formation, and induced cell apoptosis and G0/G1 phase cell cycle arrest. HO-1 was demonstrated to be a direct target of miR-1304 in NSCLC cells. Restoration of HO-1 expression by hemin (20 µmol/L) abolished the inhibition of miR-1304 on cell growth and rescued miR-1304-induced apoptosis in A549 cells. Suppression of endogenous miR-1304 with anti-1304 significantly increased HO-1 expression and promoted cell growth and survival in A549 cells. In 17 human NSCLC tissue samples, miR-1304 expression was significantly decreased, while HO-1 expression was significantly increased as compared to normal lung tissues. MicroRNA-1304 is a tumor suppressor and HO-1 is its direct target in NSCLC. The results suggest the potential for miR-1304 as a therapeutic target for NSCLC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , MicroRNAs/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Humanos , MicroRNAs/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
3.
Acta Pharmacol Sin ; 38(5): 660-671, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28112179

RESUMO

Dicer1 is an enzyme essential for microRNA (miRNA) maturation. The loss of miRNAs resulted from Dicer1 deficiency greatly contributes to the progression of many diseases, including lipid dysregulation, but its role in hepatic accumulation of free cholesterol (FC) that is critical in the development of non-alcoholic steatohepatitis (NASH) remains elusive. In this study, we used the liver-specific Dicer1-knockout mice to identify the miRNAs involved in hepatic FC accumulation. In a widely used dietary NASH model, mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, which resulted in significant increase in hepatic FC levels as well as decrease of Dicer1 mRNA levels in livers. The liver-specific Dicer1-knockout induced hepatic FC accumulation at 5-6 weeks, accompanied by increased mRNA and protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme of cholesterol synthesis in livers. Eleven predicted miRNAs were screened, revealing that miR-29a/b/c significantly suppressed HMGCR expression by targeting the HMGCR mRNA 3'-UTR. Overexpression of miR-29a in SMMC-7721 cells, a steatosis hepatic cell model, significantly decreased HMGCR expression and the FC level. Furthermore, the expression levels of miR-29a were inversely correlated with HMGCR expression levels in the MCD diet mouse model in vivo and in 2 steatosis hepatic cell models (SMMC-7721 and HL-7702 cells) in vitro. Our results show that Dicer1/miR-29/HMGCR axis contributes to hepatic free cholesterol accumulation in mouse NASH, and miR-29 may serve as an important regulator of hepatic cholesterol homeostasis. Thus, miR-29a could be utilized as a potential therapeutic target for the treatment of non-alcoholic fatty liver disease as well as for other liver diseases associated with FC accumulation.


Assuntos
Colesterol/metabolismo , RNA Helicases DEAD-box/deficiência , Hidroximetilglutaril-CoA Redutases/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ribonuclease III/deficiência , Animais , RNA Helicases DEAD-box/metabolismo , Dieta/efeitos adversos , Técnicas de Inativação de Genes , Masculino , Metionina/deficiência , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo
4.
Acta Pharmacol Sin ; 35(2): 292-300, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362331

RESUMO

AIM: Monocrotaline (MCT) in plants of the genus Crotalaria induces significant toxicity in multiple organs including the liver, lung and kidney. Metabolic activation of MCT is required for MCT-induced toxicity. In this study, we attempted to determine whether the toxicity of MCT in kidney was a consequence of the metabolic activation of MCT in the liver. METHODS: Liver-specific cytochrome P450 reductase-null (Null) mice, wild-type (WT) mice and CYP3A inhibitor ketoconazole-pretreated WT (KET-WT) mice were examined. The mice were injected with MCT (300, 400, or 500 mg/kg, ip), and hepatotoxicity and nephrotoxicity were examined 24 h after MCT treatment. The levels of MCT and its metabolites in the blood, liver, lung, kidney and bile were determined using LC-MS analysis. RESULTS: Treatment of WT mice with MCT increased the serum levels of alanine aminotransferase, hyaluronic acid, urea nitrogen and creatinine in a dose-dependent manner. Histological examination revealed that MCT (500 mg/kg) caused severe liver injury and moderate kidney injury. In contrast, these pathological abnormalities were absent in Null and KET-WT mice. After injection of MCT (400 and 500 mg/kg), the plasma, liver, kidney and lung of WT mice had significantly lower MCT levels and much higher N-oxide metabolites contents in compared with those of Null and KET-WT mice. Furthermore, WT mice had considerably higher levels of tissue-bound pyrroles and bile GSH-conjugated MCT metabolites compared with Null and KET-WT mice. CONCLUSION: Cytochrome P450s in mouse liver play a major role in the metabolic activation of MCT and thus contribute to MCT-induced renal toxicity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Rim/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Monocrotalina/farmacologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Chem Commun (Camb) ; 53(20): 2938-2941, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28225129

RESUMO

Direct conversion of biomass-derived xylose and furfural into levulinic acid, a platform molecule, via acid-catalysis has been accomplished for the first time in dimethoxymethane/methanol. Dimethoxymethane acted as an electrophile to transform furfural into 5-hydroxymethylfurfural (HMF). Methanol suppressed both the polymerisation of the sugars/furans and the Aldol condensation of levulinic acid/ester.

6.
Bioresour Technol ; 96(14): 1570-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15978989

RESUMO

Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.


Assuntos
Fontes de Energia Bioelétrica , Biomassa , Celulose/química , Temperatura Alta , Metais Alcalinos/química , Metais Alcalinoterrosos/química , Saccharum/química , Eliminação de Resíduos/métodos , Volatilização
7.
Bioresour Technol ; 133: 469-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23454803

RESUMO

Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, ß-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst.


Assuntos
Ácidos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos/química , Biopolímeros , Catálise/efeitos dos fármacos , Ácidos Levulínicos/metabolismo , Polissacarídeos/química , Solubilidade
8.
ChemSusChem ; 5(8): 1427-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730169

RESUMO

Acid treatments of xylose have been performed in a methanol/water mixture to investigate the reaction pathways of xylose during bio-oil esterification. Xylose was mainly converted into methyl xylosides with negligible humins formed below 130 °C. However, humins formation became significant with the dehydration of xylose to furfural and 2-(dimethoxymethyl)furan (DOF) at elevated temperatures. The conversion of xylose to methyl xylosides protected the C1 hydroxyl group of xylose, which stabilized xylose and suppressed the formation of sugar oligomers and polymerization reactions. In comparison, the conversion of furfural to DOF protected the carbonyl group of furfural. However, the protection did not remarkably suppress the polymerization of furfural at high temperatures because of the shift of the reaction equilibrium from DOF to furfural with a prolonged residence time. In addition, the acid treatment of furfural produced methyl levulinate in methanol and levulinic acid in water, which was catalyzed by formic acid.


Assuntos
Biocombustíveis , Metanol/química , Xilose/química , Ácidos/química , Catálise , Furaldeído/química , Substâncias Húmicas , Temperatura , Água/química
9.
Bioresour Technol ; 123: 249-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940326

RESUMO

Bio-oil from pyrolysis of mallee (Eucalyptus loxophleba ssp. gratiae) leaves differs from that obtained with wood by its content of cyclic ethers, terpenoids and N-containing organic compounds. Upgrading of the leaf bio-oil in methanol with a solid acid catalyst was investigated and it was found that the N-containing organics in the bio-oil lead to deactivation of the catalyst in the initial stage of exposure and have to be removed via employing high catalyst loading to allow the occurrence of other acid-catalysed reactions. Eucalyptol, the main cyclic ether in the bio-oil, could be converted into the aromatic hydrocarbon, p-cymene, through a series of intermediates including α-terpineol, terpinolene, and α-terpinene. Various steps such as ring-opening, dehydration, isomerisation, and aromatization were involved in the conversion of eucalyptol. The terpenoids in bio-oil could also be converted into aromatic hydrocarbons that can serve as starting materials for the synthesis of fine chemicals, via the similar processes.


Assuntos
Ácidos/química , Éteres Cíclicos/metabolismo , Eucalyptus/química , Folhas de Planta/química , Óleos de Plantas/química , Terpenos/metabolismo , Ácido Acético/análise , Catálise , Cicloexanóis/análise , Esterificação , Éteres Cíclicos/química , Eucaliptol , Espectrometria de Massas , Metanol/química , Monoterpenos/análise , Nitrogênio/análise , Estirenos/química , Terpenos/química , Fatores de Tempo
10.
Bioresour Technol ; 102(21): 10104-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21906934

RESUMO

The formation of humin-type polymers and other products during exposure of glucose to methanol/water mixtures with methanol/water mass ratios from 10 to 0.22 in the presence of the acid catalyst Amberlyst 70 was investigated. In water-rich medium (methanol/water mass ratio: 0.22), dehydration of glucose produced 5-(hydroxymethyl)furfural (HMF), furfural, and substantial amounts of polymer. In methanol-rich medium (methanol/water mass ratio: 10), the hydroxyl and carbonyl groups of glucose, HMF or furfural were protected via etherification and acetalisation. These protections stabilized these reactive compounds and significantly lowered the polymer formation (1.43% of the glucose loaded). The polymerization of glucose and HMF was also favored at high temperatures and long residence times. Conversely, high catalyst dosage mainly accelerated the conversion of glucose to methyl levulinate. Thus, the polymerization of glucose and HMF can be suppressed in methanol/water mixtures with high methanol ratios, at low temperatures and short residence times.


Assuntos
Glucose/metabolismo , Substâncias Húmicas/análise , Polímeros/síntese química , Catálise , Elementos Químicos , Esterificação , Furaldeído/análogos & derivados , Furaldeído/química , Furaldeído/metabolismo , Glucose/química , Hidroquinonas/síntese química , Hidroquinonas/química , Cinética , Metanol/química , Modelos Químicos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo , Água/química
11.
Bioresour Technol ; 101(20): 7935-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20547451

RESUMO

The structural features and combustion reactivity of chars prepared from the fast pyrolysis of mallee wood were investigated using Raman spectroscopy and thermogravimetric analysis. The Raman spectra were curve-fitted by using 10 Gaussian bands, representing different structural features of chars. The total Raman peak areas between 800 and 1800 cm⁻¹ and combustion reactivity of chars were seen to decrease with increasing pyrolysis temperature. The curve-fitting Raman spectra represented that the formation of amorphous carbon structure with smaller polyaromatic rings are dominant in chars from bigger particles of biomass and at lower temperature. The condensed and larger aromatic ring systems are preferentially formed in chars from smaller particles and at higher temperature. The former structure is higher reactive than the latter one, which is reflected in the char reactivity. The retention of inherent catalytic species (AAEM) also plays an important role in char reactivity. However, our results suggested that the structure of char played a more dominant role than the catalytic effects of AAEM species in the char intrinsic combustion reactivity.


Assuntos
Biomassa , Gases/química , Análise Espectral Raman , Termogravimetria
12.
Environ Sci Technol ; 44(10): 3719-23, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20415414

RESUMO

Understanding the conversion of coal-N during gasification is an important part of the development of gasification-based power generation technologies to reduce NO(x) emissions from coal utilization. This study investigated the conversion of coal-N in the presence of NO during the gasification of three rank-ordered coals and their chars in steam and low-concentration O(2). Our results show that NO can be incorporated into the char structure during gasification. The inherent char-N and the N incorporated into the char from NO-char reactions behave very similarly during gasification. During the gasification in steam, significant amounts of HCN and NH(3) can be formed from the incorporated N structure in char, especially for the relatively "aged" chars, mainly due to the availability of abundant H radicals on the char surface during the gasification in steam. During the gasification in 2000 ppm O(2), the formation of HCN or NH(3) from the N structures in char, including those incorporated into the char from the NO-char reactions, was not a favored route of reaction mainly due to the lack of H on char surface in the presence of O(2).


Assuntos
Amônia/síntese química , Carvão Mineral , Gases/química , Cianeto de Hidrogênio/síntese química , Óxido Nítrico/química , Cromatografia Líquida de Alta Pressão
13.
Bioresour Technol ; 101(24): 9688-99, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20708928

RESUMO

This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production.


Assuntos
Carboidratos/análise , Etanol/metabolismo , Fermentação/fisiologia , Lipídeos/biossíntese , Temperatura , Biocombustíveis/análise , Biomassa , Cromatografia por Troca Iônica , Ácidos Graxos/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Hidrólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Solventes/química , Fatores de Tempo
14.
Environ Sci Technol ; 41(15): 5505-9, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17822124

RESUMO

This study was conducted to investigate the formation and destruction of NH3 during the gasification of coal in atmospheres containing O2 and steam. A Victorian brown coal was gasified in a novel bench-scale fluidized-bed/ fixed-bed reactor at 800 degrees C in atmospheres containing 2000 ppm O2, 15% H2O, or 2000 ppm O2 + 15% H2O. A NH3 standard gas was also used to study the destruction of NH3 in the gas phase and through gas-solid interactions. Sand, char, and coal ash were all found to enhance the destruction of NH3. An atmosphere containing O2 alone does not favor the conversion of char-N into NH3 but favors the destruction of NH3 through various mechanisms. The introduction of H2O into the gasification system greatly favors the conversion of char-N into NH3 and inhibits the destruction of NH3. The formation and destruction of NH3 in an atmosphere containing 15% H20 was similar to that in an atmosphere containing 15% H20 and 2000 ppm 02, indicating the dominant effects of steam in the formation and destruction of NH3 in a gasifier.


Assuntos
Amônia/química , Carvão Mineral , Oxigênio/química , Vapor , Carbono/química , Carvão Vegetal/química , Cinza de Carvão , Óxido Nítrico/análise , Material Particulado/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA