Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 283: 116786, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39083869

RESUMO

Cd ions are absorbed and transported from the soil by crop roots, which are the first organ to be exposed to Cd. This results in an increase in cadmium ions in crops, significantly affecting crop growth and yield. Exogenous melatonin (MT) can help reduce cadmium (Cd) stress in cotton, but the specific contribution of roots to this process remains unclear. In order to address this knowledge gap, an in-situ root phenotyping study was conducted to investigate the the phenotype and lifespan of roots under cadmium stress (Cd) and melatonin treatment (Cd + MT). The results showed that MT alleviated the decreases in plant height, leaf area, SPAD value, stem diameter, stomatal conductance and net photosynthetic rate under Cd stress, which further promoted the biomass accumulation in various cotton organs. What is more, the Cd + MT treatment increased root volume, surface area, and length under Cd stress by 25.63 %, 10.58 %, and 21.89 %, respectively, compared with Cd treatment. Interestingly, compared to Cd treatment, Cd + MT treatment also significantly extended the lifespan of roots and root hairs by 6.68 days and 2.18 days, respectively. In addition, Cd + MT treatment reduced the transport of Cd from roots to shoots, particularly to bolls, and decreased the Cd bioconcentration factor in bolls by 61.17 %, compared to Cd treatment. In conclusion, these findings show that applying MT externally helps reduce Cd stress by delaying root senescence, promoting root development and regulating Cd transport. This method can be an effective approach to managing Cd stress in cotton.

2.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404956

RESUMO

(1) Background: Upland cotton (Gossypium hirsutum L.) is the most important natural fiber worldwide, and it is extensively planted and plentifully used in the textile industry. Major cotton planting regions are frequently affected by abiotic stress, especially drought stress. Drought resistance is a complex, quantitative trait. A genome-wide association study (GWAS) constitutes an efficient method for dissecting the genetic architecture of complex traits. In this study, the drought resistance of a population of 316 upland cotton accessions was studied via GWAS. (2) Methods: GWAS methodology was employed to identify relationships between molecular markers or candidate genes and phenotypes of interest. (3) Results: A total of 8, 3, and 6 SNPs were associated with the euphylla wilting score (EWS), cotyledon wilting score (CWS), and leaf temperature (LT), respectively, based on a general linear model and a factored spectrally transformed linear mixed model. For these traits, 7 QTLs were found, of which 2 each were located on chromosomes A05, A11, and D03, and of which 1 was located on chromosome A01. Importantly, in the candidate regions WRKY70, GhCIPK6, SnRK2.6, and NET1A, which are involved in the response to abscisic acid (ABA), the mitogen-activated protein kinase (MAPK) signaling pathway and the calcium transduction pathway were identified in upland cotton at the seedling stage under drought stress according to annotation information and linkage disequilibrium (LD) block analysis. Moreover, RNA sequencing analysis showed that WRKY70, GhCIPK6, SnRK2.6, and NET1A were induced by drought stress, and the expression of these genes was significantly different between normal and drought stress conditions. (4) Conclusions: The present study should provide some genomic resources for drought resistance in upland cotton. Moreover, the germplasm of the different phenotypes, the detected SNPs and, the potential candidate genes will be helpful for molecular marker-assisted breeding studies about increased drought resistance in upland cotton.


Assuntos
Gossypium/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plântula/genética , Adaptação Fisiológica , Secas , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Gossypium/fisiologia , Desequilíbrio de Ligação , Plântula/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA