RESUMO
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Assuntos
Mercúrio , Metais Pesados , Microbiota , Poluentes do Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Solo/química , Chumbo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental , Medição de Risco , Zinco/análise , Cromo/análise , Mercúrio/análise , Níquel/análise , ChinaRESUMO
We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete spectrometer will have 1000 TES pixels with energy resolution of 0.5 eV full-width at half-maximum (FWHM) for incident energies below 1 keV while maintaining pulse decay-time constants shorter than 100 µs. Historically, TES pixels have often been designed for a particular scientific application via a combination of simple scaling relations and trial-and-error experimentation with device geometry. We have improved upon this process by using our understanding of transition physics to guide TES design. Using the two-fluid approximation of the phase-slip line model for TES resistance, we determine how the geometry and critical temperature of a TES will affect the shape of the transition. We have used these techniques to design sensors with a critical temperature of 55 mK. The best sensors achieve an energy resolution of 0.75 eV FWHM at 1.25 keV. Building upon this result, we show how the next generation of sensors can be designed to reach our goal of 0.5 eV resolution.
RESUMO
Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour, but for a low-quality-factor mechanical system. The field of cavity optomechanics and electromechanics, in which a high-quality-factor mechanical oscillator is parametrically coupled to an electromagnetic cavity resonance, provides a practical architecture for cooling, manipulation and detection of motion at the quantum level. One requirement is strong coupling, in which the interaction between the two systems is faster than the dissipation of energy from either system. Here, by incorporating a free-standing, flexible aluminium membrane into a lumped-element superconducting resonant cavity, we have increased the single-photon coupling strength between these two systems by more than two orders of magnitude, compared to previously obtained coupling strengths. A parametric drive tone at the difference frequency between the mechanical oscillator and the cavity resonance dramatically increases the overall coupling strength, allowing us to completely enter the quantum-enabled, strong-coupling regime. This is evidenced by a maximum normal-mode splitting of nearly six bare cavity linewidths. Spectroscopic measurements of these 'dressed states' are in excellent quantitative agreement with recent theoretical predictions. The basic circuit architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of long-lived quantum states of mechanical motion.
RESUMO
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.
RESUMO
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
RESUMO
Objective: The potential ecological risk index (RI) is the most commonly used method to assess heavy metals (HMs) contamination in soils. However, studies have focused on the response of soil microorganisms to different concentrations, whereas little is known about the responses of the microbial community structures and functions to HMs at different RI levels. Methods: Here, we conducted soil microcosms with low (L), medium (M) and high (H) RI levels, depending on the Pb and Cd concentrations, were conducted. The original soil was used as the control (CK). High-throughput sequencing, qPCR, and Biolog plate approaches were applied to investigate the microbial community structures, abundance, diversity, metabolic capacity, functional genes, and community assembly processes. Result: The abundance and alpha diversity indices for the bacteria at different RI levels were significantly lower than those of the CK. Meanwhile, the abundance and ACE index for the fungi increased significantly with RI levels. Acidobacteria, Basidiomycota and Planctomycetes were enriched as the RI level increased. Keystone taxa and co-occurrence pattern analysis showed that rare taxa play a vital role in the stability and function of the microbial community at different RI levels. Network analysis indicates that not only did the complexity and vulnerability of microbial community decrease as risk levels increased, but that the lowest number of keystone taxa was found at the H level. However, the microbial community showed enhanced intraspecific cooperation to adapt to the HMs stress. The Biolog plate data suggested that the average well color development (AWCD) reduced significantly with RI levels in bacteria, whereas the fungal AWCD was dramatically reduced only at the H level. The functional diversity indices and gene abundance for the microorganisms at the H level were significantly lower than those the CK. In addition, microbial community assembly tended to be more stochastic with an increase in RI levels. Conclusion: Our results provide new insight into the ecological impacts of HMs on the soil microbiome at different risk levels, and will aid in future risk assessments for Pb and Cd contamination.
RESUMO
Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)4(2,2'-bipyridine)]2- (1), [Fe(CN)4(2,3-bis(2-pyridyl)pyrazine)]2- (2) and [Fe(CN)4(2,2'-bipyrimidine)]2- (3) were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the 1MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the 3MLCT lifetime to range from 180 fs to 67 ps. The 3MLCT lifetimes in 1 and 2 decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (3MC) excited state, as established by the Tanabe-Sugano analysis of the Fe 2p3d RIXS data. In contrast, the 3MLCT lifetime in 3 changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing 3MLCT â ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The 3MLCT â GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode (hν = 1530 cm-1), which is most displaced for complex 3, making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the 3MLCT and the 3MC states and suppression of the intramolecular distortion of the acceptor ligand in the 3MLCT excited state.
RESUMO
We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10-3. We exploit this finding to increase the yield of the BLAST-TNG 250 µm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.
RESUMO
We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV. Each pixel serves as both a highly sensitive calorimeter and an X-ray absorber with near unity quantum efficiency. We have commissioned this 240-pixel TES spectrometer at the Stanford Synchrotron Radiation Lightsource beamline 10-1 (BL 10-1) and used it to probe the local electronic structure of sample materials with unprecedented sensitivity in the soft X-ray regime. As mounted, the TES spectrometer has a maximum detection solid angle of 2 × 10-3 sr. The energy resolution of all pixels combined is 1.5 eV full width at half maximum at 500 eV. We describe the performance of the TES spectrometer in terms of its energy resolution and count-rate capability and demonstrate its utility as a high throughput detector for synchrotron-based X-ray spectroscopy. Results from initial X-ray emission spectroscopy and resonant inelastic X-ray scattering experiments obtained with the spectrometer are presented.
RESUMO
The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.
RESUMO
NMR spin echo measurements of 13C in C60, 89Y in Y2O3, and 29Si in silicon are shown to defy conventional expectations when more than one pi pulse is used. Multiple pi-pulse echo trains may either freeze out or accelerate the decay of the signal, depending on the pi-pulse phase. Average Hamiltonian theory, combined with exact quantum calculations, reveals an intrinsic cause for these coherent phenomena: the dipolar coupling has a many-body effect during any real, finite pulse.