Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 84-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538792

RESUMO

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Pele , Têxteis , Eletrodos
2.
Ann Neurol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877824

RESUMO

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024.

3.
Nature ; 575(7783): 473-479, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748722

RESUMO

Traditional technologies for virtual reality (VR) and augmented reality (AR) create human experiences through visual and auditory stimuli that replicate sensations associated with the physical world. The most widespread VR and AR systems use head-mounted displays, accelerometers and loudspeakers as the basis for three-dimensional, computer-generated environments that can exist in isolation or as overlays on actual scenery. In comparison to the eyes and the ears, the skin is a relatively underexplored sensory interface for VR and AR technology that could, nevertheless, greatly enhance experiences at a qualitative level, with direct relevance in areas such as communications, entertainment and medicine1,2. Here we present a wireless, battery-free platform of electronic systems and haptic (that is, touch-based) interfaces capable of softly laminating onto the curved surfaces of the skin to communicate information via spatio-temporally programmable patterns of localized mechanical vibrations. We describe the materials, device structures, power delivery strategies and communication schemes that serve as the foundations for such platforms. The resulting technology creates many opportunities for use where the skin provides an electronically programmable communication and sensory input channel to the body, as demonstrated through applications in social media and personal engagement, prosthetic control and feedback, and gaming and entertainment.


Assuntos
Realidade Aumentada , Desenho de Equipamento , Pele , Tato , Interface Usuário-Computador , Realidade Virtual , Tecnologia sem Fio/instrumentação , Comunicação , Epiderme , Retroalimentação , Feminino , Humanos , Masculino , Próteses e Implantes , Robótica , Mídias Sociais , Vibração , Jogos de Vídeo
4.
Eur Radiol ; 34(1): 509-524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37507611

RESUMO

OBJECTIVES: To investigate the efficiency of a combination of preoperative contrast-enhanced computed tomography (CECT) and carbohydrate antigen 19-9 (CA19-9) in predicting disease-free survival (DFS) after R0 resection of pancreatic ductal adenocarcinoma (PDAC). METHODS: A total of 138 PDAC patients who underwent curative R0 resection were retrospectively enrolled and allocated chronologically to training (n = 91, January 2014-July 2019) and validation cohorts (n = 47, August 2019-December 2020). Using univariable and multivariable Cox regression analyses, we constructed a preoperative clinicoradiographic model based on the combination of CECT features and serum CA19-9 concentrations, and validated it in the validation cohort. The prognostic performance was evaluated and compared with that of postoperative clinicopathological and tumor-node-metastasis (TNM) models. Kaplan-Meier analysis was conducted to verify the preoperative prognostic stratification performance of the proposed model. RESULTS: The preoperative clinicoradiographic model included five independent prognostic factors (tumor diameter on CECT > 4 cm, extrapancreatic organ infiltration, CECT-reported lymph node metastasis, peripheral enhancement, and preoperative CA19-9 levels > 180 U/mL). It better predicted DFS than did the postoperative clinicopathological (C-index, 0.802 vs. 0.787; p < 0.05) and TNM (C-index, 0.802 vs. 0.711; p < 0.001) models in the validation cohort. Low-risk patients had significantly better DFS than patients at the high-risk, defined by the model preoperatively (p < 0.001, training cohort; p < 0.01, validation cohort). CONCLUSIONS: The clinicoradiographic model, integrating preoperative CECT features and serum CA19-9 levels, helped preoperatively predict postsurgical DFS for PDAC and could facilitate clinical decision-making. CLINICAL RELEVANCE STATEMENT: We constructed a simple model integrating clinical and radiological features for the prediction of disease-free survival after curative R0 resection in patients with pancreatic ductal adenocarcinoma; this novel model may facilitate preoperative identification of patients at high risk of recurrence and metastasis that may benefit from neoadjuvant treatments. KEY POINTS: • Existing clinicopathological predictors for prognosis in pancreatic ductal adenocarcinoma (PDAC) patients who underwent R0 resection can only be ascertained postoperatively and do not allow preoperative prediction. • We constructed a clinicoradiographic model, using preoperative contrast-enhanced computed tomography (CECT) features and preoperative carbohydrate antigen 19-9 (CA19-9) levels, and presented it as a nomogram. • The presented model can predict disease-free survival (DFS) in patients with PDAC better than can postoperative clinicopathological or tumor-node-metastasis (TNM) models.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Intervalo Livre de Doença , Estudos Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Prognóstico , Tomografia Computadorizada por Raios X/métodos , Carboidratos
5.
Phys Chem Chem Phys ; 26(4): 3408-3414, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38204403

RESUMO

This work explores potential high-temperature superconductor materials in hydrogen-rich systems. Here, the crystal structure stabilities of ternary Ca-Sc-H systems under high-pressure (P = 100-250 GPa) and their superconductivities are investigated using the particle swarm optimization methodology combined with first-principles calculations. For the predicted candidate structures of Ca-Sc-H systems, the pressure-dependent phase diagram and thermodynamic convex hull were investigated across a wide range of compositions; the electronic properties of all the predicted phases were analyzed in detail to study the bonding behavior of these stable phases. We identified the crystal structures of four thermodynamically stable compounds: R3̄m-CaScH6, Immm-CaSc2H9,C2/m-Ca2ScH10, and R3̄m-CaScH12. Among them, R3̄m-CaScH12 was predicted to have the highest Tc value (i.e., 173 K) at 200 GPa. The discovery of this previously unreported pressure-induced decomposition of Ca-Sc-H systems will pave the way for investigations on the nature of hydrogen-metal interactions.

6.
Eur Radiol ; 33(5): 3592-3603, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884087

RESUMO

OBJECTIVES: To estimate the potential of preoperative MR imaging features and clinical parameters in the risk stratification of patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm without microvascular invasion (MVI) after hepatectomy. METHODS: The study enrolled 166 patients with histopathological confirmed MVI-negative HCC retrospectively. The MR imaging features were evaluated by two radiologists independently. The risk factors associated with recurrence-free survival (RFS) were identified by univariate Cox regression analysis and the least absolute shrinkage and selection operator Cox regression analysis. A predictive nomogram was developed based on these risk factors, and the performance was tested in the validation cohort. The RFS was analyzed by using the Kaplan-Meier survival curves and log-rank test. RESULTS: Among the 166 patients with solitary MVI-negative HCC, 86 patients presented with postoperative recurrence. Multivariate Cox regression analysis indicated that cirrhosis, tumor size, hepatitis, albumin, arterial phase hyperenhancement (APHE), washout, and mosaic architecture were risk factors associated with poor RFS and then incorporated into the nomogram. The nomogram achieved good performance with C-index values of 0.713 and 0.707 in the development and validation cohorts, respectively. Furthermore, patients were stratified into high- and low-risk subgroups, and significant prognostic differences were found between the different subgroups in both cohorts (p < 0.001 and p = 0.024, respectively). CONCLUSION: The nomogram incorporated preoperative MR imaging features, and clinical parameters can be a simple and reliable tool for predicting RFS and achieving risk stratification in patients with solitary MVI-negative HCC. KEY POINTS: • Application of preoperative MR imaging features and clinical parameters can effectively predict RFS in patients with solitary MVI-negative HCC. • Risk factors including cirrhosis, tumor size, hepatitis, albumin, APHE, washout, and mosaic architecture were associated with worse prognosis in patients with solitary MVI-negative HCC. • Based on the nomogram incorporating these risk factors, the MVI-negative HCC patients could be stratified into two subgroups with significant different prognoses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Cirrose Hepática , Imageamento por Ressonância Magnética , Medição de Risco
7.
Org Biomol Chem ; 21(33): 6757-6761, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37615101

RESUMO

A metal-free protocol for the direct construction of C(sp2)-N and C-O bonds via a PhI(OAc)2-mediated dehydrogenative aminoacyloxylation of ß,γ-unsaturated hydrazones with Togni reagent II is reported. Initiated by the carboxyl-containing species generated in situ from Togni reagent II, this method offers a new solution for regioselective functionalization at a remote site on ß,γ-unsaturated hydrazones, thus providing a straightforward method for the synthesis of acyloxyl-substituted pyridazines. This reaction features a broad substrate scope and mild conditions.

8.
Nano Lett ; 22(8): 3447-3456, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411774

RESUMO

Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 µW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Nanopartículas Metálicas , Animais , Eletrodos , Ouro , Lasers , Ratos
9.
Nano Lett ; 22(14): 5944-5953, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816764

RESUMO

A combined treatment using medication and electrostimulation increases its effectiveness in comparison with one treatment alone. However, the organic integration of two strategies in one miniaturized system for practical usage has seldom been reported. This article reports an implantable electronic medicine based on bioresorbable microneedle devices that is activated wirelessly for electrostimulation and sustainable delivery of anti-inflammatory drugs. The electronic medicine is composed of a radio frequency wireless power transmission system and a drug-loaded microneedle structure, all fabricated with bioresorbable materials. In a rat skeletal muscle injury model, periodic electrostimulation regulates cell behaviors and tissue regeneration while the anti-inflammatory drugs prevent inflammation, which ultimately enhance the skeletal muscle regeneration. Finally, the electronic medicine is fully bioresorbable, excluding the second surgery for device removal.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica , Animais , Sistemas de Liberação de Medicamentos , Eletrônica Médica , Ondas de Rádio , Ratos , Tecnologia sem Fio
10.
Eur J Nucl Med Mol Imaging ; 49(8): 2605-2617, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34939176

RESUMO

PURPOSE: To surmount the critical issues of indocyanine green (ICG), and thus achieving a precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. METHODS: In this study, a facile and green pure-nanomedicine formulation technology is developed to construct carrier-free indocyanine green nanoparticles (nanoICG), and which subsequently dispersed into lipiodol via a super-stable homogeneous lipiodol formulation technology (SHIFT nanoICG) for transcatheter arterial embolization combined near-infrared fluorescence-guided precise hepatectomy. RESULTS: SHIFT nanoICG integrates excellent anti-photobleaching capacity, great optical imaging property, and specific tumoral deposition to recognize tumor regions, featuring entire-process enduring fluorescent-guided precise hepatectomy, especially in resection of the indiscoverable satellite lesions (0.6 mm × 0.4 mm) in rabbit bearing VX2 orthotopic hepatocellular carcinoma models. CONCLUSION: Such a simple and effective strategy provides a promising avenue to address the clinical issue of clinical hepatectomy and has excellent potential for a translational pipeline.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Nanopartículas , Cirurgia Assistida por Computador , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Óleo Etiodado , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imagem Óptica/métodos , Coelhos , Cirurgia Assistida por Computador/métodos
11.
FASEB J ; 35(4): e21460, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724554

RESUMO

Spermatogenesis is a highly sophisticated process that comprises of mitosis, meiosis, and spermiogenesis. RNF216 (ring finger protein 216), an E3 ubiquitin ligase, has been reported to be essential for spermatogenesis and male fertility in mice. However, the stages affected by Rnf216 deficiency and its underlying molecular pathological mechanisms are still unknown. In this study, we generated Rnf216-deficient mice (Rnf216-/- ) using CRISPR-Cas9 technology. Knockout of Rnf216 led to infertility in male but not female mice. Rnf216 knockout affected the prophase of meiosis I, as no genotypic difference was observed until 12 dpp (days postpartum). Rnf216-/- spermatocytes were incompletely arrested at the zygotene stage and underwent apoptosis at approximately the pachytene stage. The proportion of zygotene spermatocytes was significantly increased, whereas the proportion of pachytene spermatocytes was significantly decreased in Rnf216-/- testes. Nevertheless, there was no significantly genotypic difference in the number of diplotene spermatocytes. We further revealed that the PKA catalytic subunit ß (PRKACB) was significantly increased, which subsequently resulted in elevated PKA activity in testes from adult as well as 9 dpp Rnf216-/- mice. RNF216 interacts with PRKACB and promotes its degradation through the ubiquitin-lysosome pathway. Collectively, our results revealed an important role for RNF216 in regulation of meiosis and PKA stability in the testes.


Assuntos
Meiose/fisiologia , Testículo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/genética , Feminino , Humanos , Masculino , Camundongos Transgênicos , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Inorg Chem ; 61(20): 7890-7896, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35521946

RESUMO

After reports of unusually low oxidation states of lanthanide elements in Ln-B clusters and their inverse sandwich geometrical topologies, the interest shifted from boride clusters doped with transition metal (TM) elements to the boride clusters doped with lanthanide atoms. In this work, the results obtained by a combined approach consisting of CALYPSO structure predictions and density functional theory (DFT) calculations for the neutral and anionic PrBn series, n = 7-16, are reported. A close agreement between our calculated vertical detachment energies and experimental data supports the accuracy of the results obtained. Contrary to the medium-size TM-doped medium boron clusters, which prefer three types of structural configurations, all lowest-energy states of the medium-size Pr-doped boron clusters have half-sandwich geometries. An interesting structural evolution pattern was found for both neutral and anionic PrBn clusters at n = 7, 10, 13, and 16, which includes quasi-planar B7 units half-sandwiching the Pr atom. Unusual oxidation numbers of +2 and +1 were found for the Pr atom in the PrB7- and PrB8- anions, respectively. Chemical bonding analysis for the neutral PrB7 and PrB13 clusters revealed that their high stability stems from interactions between Pr 5d and B 2p orbitals. A stable tubular-shaped PrB30 cluster is proposed as a promising building block for boron-based nanotubes.

13.
Arch Virol ; 167(10): 2027-2034, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35752683

RESUMO

Little is known about the prophages in Hafniaceae bacteria. A novel Hafnia phage, yong2, was induced from Hafnia paralvei by treatment with mitomycin C. The phage has an elliptical head with dimensions of approximately 45 × 38 nm and a long noncontractile tail of approximately 157 × 4 nm. The complete genome of Hafnia phage yong2 is a 39,546-bp double-stranded DNA with a G+C content of 49.9%, containing 59 open reading frames (ORFs) and having at least one fixed terminus (GGGGCAGCGACA). In phylogenetic analysis, Hafnia phage yong2 clustered with four predicted Hafnia prophages and one predicted Enterobacteriaceae prophage. These prophages and members of the family Drexlerviridae together formed two distinct subclades nested within a clade, suggesting the existence of a novel class of prophages with conserved sequences and a unique evolutionary status not yet studied before in Hafniaceae and Enterobacteriaceae bacteria.


Assuntos
Bacteriófagos , Hafnia , Bacteriófagos/genética , Genoma Viral , Genômica , Hafnia/virologia , Fases de Leitura Aberta , Filogenia , Prófagos/genética
14.
Arch Virol ; 167(11): 2371-2376, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35857150

RESUMO

The freshwater cyanophage Mwe-Yong1112-1 was isolated using Microcystis wesenbergii as a host and found to have an icosahedral head, about 45 nm in diameter, and a flexible tail, approximately 133 nm in length and 4.5 nm in width. The complete genome of the cyanophage is 39,679 bp in length with a G+C content of 66.6%. Mwe-Yong1112-1 shared the highest pairwise average nucleotide identity (ANI) value of 67.7% (below the ≥95% boundary to define a species) and the highest nucleotide sequence similarity of 17.48% (below the >70% boundary to define a genus) with the most closely related phage. In a proteomic tree, Mwe-Yong1112-1 and three unclassified phages formed a monophyletic clade between the families Saparoviridae and Pyrstoviridae, but Mwe-Yong1112-1 occupied a separate branch from the other three phages, suggesting that it represents a new evolutionary lineage. This study enriches the available information about freshwater cyanophages.


Assuntos
Bacteriófagos , Microcystis , Bacteriófagos/genética , Água Doce , Genoma Viral , Humanos , Microcystis/genética , Nucleotídeos , Filogenia , Proteômica
15.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35213854

RESUMO

Two-dimensional transition metals borides TixBxhave excellent magnetic and electronic properties and great potential in metal-ion batteries and energy storage. The thermal management is important for the safety and stability in these applications. We investigated the lattice dynamical and thermal transport properties of bulk-TiB2and its two-dimensional (2D) counterparts based on density functional theory combined with solving phonon Boltzmann transport equation. The Poisson's ratio of bulk-TiB2is positive while it changes to negative for monolayer TiB2. We found that dimension reduction can cause the room-temperature in-plane lattice thermal conductivity decrease, which is opposite the trend of MoS2, MoSe2, WSe2and SnSe. Additionally, the room temperature thermal conductivity of mono-TiB2is only one sixth of that for bulk-TiB2. It is attributed to the higher Debye temperature and stronger bonding stiffness in bulk-TiB2. The bulk-TiB2has higher phonon group velocity and weaker anharmonic effect comparing with its 2D counterparts. On the other hand, the room temperature lattice thermal conductivity of mono-Ti2B2is two times higher than that of mono-TiB2, which is due to three-phonon selection rule caused by the horizontal mirror symmetry.

16.
Phys Chem Chem Phys ; 24(25): 15340-15348, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703326

RESUMO

Two-dimensional diamond, also called diamane, has attracted great research attention for its novel physical properties and potential applications in nanoelectronics, ultrasensitive resonators and thermal management. Compared with the hexagonal diamane, the physical properties of the rectangular diamane are less explored. In this work, using first-principles calculations, we conducted a comprehensive study on the electronic, phononic, thermal and mechanical properties of three types of rectangular diamanes. We found that rectangular diamanes possess a high Debye temperature (722-788 K) and a strong in-plane Young's modulus (405.9-575.9 N m-1). We further show close to zero Poisson's ratio in the rectangular Pmma diamane. Moreover, based on the phonon Boltzmann transport equation, high room temperature lattice thermal conductivity (910-1807 W m-1 K-1) and strong configuration and orientation dependence are demonstrated. Phonon group velocity, relaxation time and characteristic square velocity are explored and it is demonstrated that phonon harmonic behavior is responsible for the remarkable configuration dependent thermal conductivity in rectangular diamanes. The present work underscores the use of nanostructure engineering to manipulate thermal conductivity of 2D diamond, which provides opportunities for developing effective thermal channeling devices.

17.
Phys Chem Chem Phys ; 24(40): 24873-24880, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196962

RESUMO

Two-dimensional ferromagnetic (FM) half-metals are promising candidates for advanced spintronic devices with small size and high capacity. Motivated by a recent report on controlling the synthesis of FM Cr3Te4 nanosheets, herein, to explore their potential application in spintronics, we designed spintronic devices based on Cr3X4 (X = Se, Te) monolayers and investigated their spin transport properties. We found that the Cr3Te4 monolayer based device shows spin filtering and a dual-spin diode effect when applying a bias voltage, while the Cr3Se4 monolayer is an excellent platform to realize a spin valve. These different transport properties are primarily ascribed to the semiconducting spin channel, which is close to and away from the Fermi level in Cr3Te4 and Cr3Se4 monolayers, respectively. Interestingly, the current in the Cr3Se4 monolayer based device also displays a negative differential resistance effect (NDRE) and a high magnetoresistance ratio (up to 2 × 103). Moreover, we found a thermally induced spin filtering effect and a NDRE at the Cr3Se4 junction under a temperature gradient instead of a bias voltage. These theoretical findings highlight the potential of Cr3X4 (X = Se, Te) monolayers in spintronic applications and put forward realistic materials to realize nanoscale spintronic devices.

18.
Phys Chem Chem Phys ; 24(8): 4916-4924, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137738

RESUMO

An extensive exploration of high-pressure phase diagrams of NpHx (x = 1-10) compounds was performed by using swarm-intelligence-based CALYPSO structure searches. We propose five stable hydrogen-rich clathrate phases (P4/nmm-NpH5, Cmcm-NpH7, Fm3̄m-NpH8, P63/mmc-NpH9, and Fm3̄m-NpH10) that are composed of unusual H cages with stoichiometries H20, H24, H29, and H32 in which the H atoms are weakly covalently bonded to one another, with neptunium atoms occupying centers of the cages. The electronic structure analyses show that these predicted hydrogen-rich structures are all metallic phases, and Np-H and H-H bonds are formed by ionic and covalent bond interactions, respectively. The charge transfer from the Np atom plays an important role in the stability of the proposed structures. All hydrogen-rich clathrate structures show superconductivity behavior in their respective stability pressure range. Our work is an important step in understanding the phase stability and bonding behavior of NpHx under extreme conditions and provides a valuable reference for experimental synthesis and identification of cage-like neptunium hydrides.

19.
Curr Microbiol ; 79(2): 50, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982243

RESUMO

Hafnia paralvei is a bacterium that can cause zoonoses. No research has been reported on H. paralvei prophage. In this study, a Hafnia phage yong1 was induced from pathogenic H. paralvei LY-23 by mitomycin C. The phage showed a Myoviridae-like morphology having a hexagonal head of approximately 65 nm in diameter and a contractile tail of approximately 95 nm in length and 17 nm in width. Its genome was sequenced by using the Illumina Miseq platform. The complete genome of Hafnia phage yong1 is 43,329 bp with a G + C content of 47.65%. BLASTn analysis revealed that Hafnia phage yong1 had the highest sequence similarity with the predicted prophages of Enterobacter chengduensis strain WCHECl-C4 = WCHECh050004 recovered from a human blood sample and Escherichia coli strain L103-2 recovered from a goose farm in China. Hafnia phage yong1 contains a tRNA gene and 76 predicted open reading frames, 33 of which were annotated. Gene strings similar to the bacteriophage λ cro-cI-rexA-rexB operon conferring Imm and Rex to lysogenic cells were found in Hafnia phage yong1 genome. Hafnia phage yong1 is the first Myoviridae-like phage found to contain such contiguous genes. Hafnia phage yong1 formed an independent branch between two families, Chaseviridae and Drexlerviridae, in the Proteomic tree.


Assuntos
Bacteriófagos/genética , Genoma Viral , Hafnia , Proteômica , Genômica , Hafnia/virologia , Fases de Leitura Aberta
20.
BMC Pediatr ; 22(1): 629, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329391

RESUMO

BACKGROUND: As sequencing technology has advanced in recent years, a series of synapse-related gene variants have been reported to be associated with autism spectrum disorders (ASDs). The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor is a subtype of the ionotropic glutamate receptor, whose number or composition changes can regulate the strength and plasticity of synapses. CASE PRESENTATION: Here, we report a de novo GRIA2 variant (NM_001083619.3: c.2308G > A, p.Ala770Thr) in a patient with obvious behavior regression and psychiatric symptoms. It encodes GluA2, which is the crucial subunit of the AMPA receptor, and the missense variation is predicted to result in instability of the protein structure. CONCLUSIONS: The association between GRIA2 variants and onset of ASD symptoms is rare, and our study expands the spectrum of phenotypic variations. For patients with an unexplained etiology of ASD accompanied by psychiatric symptoms, genetic causes should be considered, and a complete genetic evaluation should be performed.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA