Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO J ; 40(22): e108966, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34618370

RESUMO

Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.


Assuntos
Infecções por Alphavirus/virologia , Linfonodos/citologia , Receptores Imunológicos/metabolismo , Viremia/patologia , Alphavirus/patogenicidade , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Células de Kupffer/virologia , Linfonodos/virologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , RNA Viral/metabolismo , Receptores Imunológicos/genética , Análise de Célula Única , Viremia/virologia
2.
PLoS Pathog ; 18(5): e1010474, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511797

RESUMO

Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.


Assuntos
Vírion , Vírus , Imunidade Inata , Vírus/genética
3.
Fam Process ; 63(2): 667-690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533758

RESUMO

Relational savoring (RS) is a brief, strengths-based approach to heightening attentional focus to moments of positive connectedness within relationships. RS can be administered preventatively or within an intervention context when a therapist aspires to foster more optimal relational functioning. Typically administered within a one-on-one therapy setting, RS has demonstrated efficacy in enhancing intra- and interpersonal outcomes. To increase access to mental health services, the developers of RS are committed to engaging in an iterative approach of enhancing the cultural congruence and accessibility of this intervention within various cultural contexts, beginning with Latine groups in Southern California. In this article, we describe relational savoring and its theoretical and empirical support, including the process of culturally adapting the intervention within the context of three major studies, each with a distinct focus on Latine groups, a community that is underserved in mental health care settings. We then provide a vision for future research to improve upon the intervention's compatibility for Latine families and other populations.


Assuntos
Hispânico ou Latino , Humanos , Hispânico ou Latino/psicologia , Feminino , Masculino , Relações Interpessoais , Adulto , Assistência à Saúde Culturalmente Competente , California , Terapia Familiar/métodos
4.
Hum Brain Mapp ; 44(12): 4572-4589, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37417795

RESUMO

Distinct neural effects of threat versus deprivation emerge by childhood, but little data are available in infancy. Withdrawn versus negative parenting may represent dimensionalized indices of early deprivation versus early threat, but no studies have assessed neural correlates of withdrawn versus negative parenting in infancy. The objective of this study was to separately assess the links of maternal withdrawal and maternal negative/inappropriate interaction with infant gray matter volume (GMV), white matter volume (WMV), amygdala, and hippocampal volume. Participants included 57 mother-infant dyads. Withdrawn and negative/inappropriate aspects of maternal behavior were coded from the Still-Face Paradigm at four months infant age. Between 4 and 24 months (M age = 12.28 months, SD = 5.99), during natural sleep, infants completed an MRI using a 3.0 T Siemens scanner. GMV, WMV, amygdala, and hippocampal volumes were extracted via automated segmentation. Diffusion weighted imaging volumetric data were also generated for major white matter tracts. Maternal withdrawal was associated with lower infant GMV. Negative/inappropriate interaction was associated with lower overall WMV. Age did not moderate these effects. Maternal withdrawal was further associated with reduced right hippocampal volume at older ages. Exploratory analyses of white matter tracts found that negative/inappropriate maternal behavior was specifically associated with reduced volume in the ventral language network. Results suggest that quality of day-to-day parenting is related to infant brain volumes during the first two years of life, with distinct aspects of interaction associated with distinct neural effects.


Assuntos
Substância Branca , Feminino , Humanos , Lactente , Criança , Substância Branca/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Mães , Comportamento Materno , Encéfalo/diagnóstico por imagem
5.
J Med Internet Res ; 25: e45028, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266996

RESUMO

BACKGROUND: The current methods of evaluating cognitive functioning typically rely on a single time point to assess and characterize an individual's performance. However, cognitive functioning fluctuates within individuals over time in relation to environmental, psychological, and physiological contexts. This limits the generalizability and diagnostic utility of single time point assessments, particularly among individuals who may exhibit large variations in cognition depending on physiological or psychological context (eg, those with type 1 diabetes [T1D], who may have fluctuating glucose concentrations throughout the day). OBJECTIVE: We aimed to report the reliability and validity of cognitive ecological momentary assessment (EMA) as a method for understanding between-person differences and capturing within-person variation in cognition over time in a community sample and sample of adults with T1D. METHODS: Cognitive performance was measured 3 times a day for 15 days in the sample of adults with T1D (n=198, recruited through endocrinology clinics) and for 10 days in the community sample (n=128, recruited from TestMyBrain, a web-based citizen science platform) using ultrabrief cognitive tests developed for cognitive EMA. Our cognitive EMA platform allowed for remote, automated assessment in participants' natural environments, enabling the measurement of within-person cognitive variation without the burden of repeated laboratory or clinic visits. This allowed us to evaluate reliability and validity in samples that differed in their expected degree of cognitive variability as well as the method of recruitment. RESULTS: The results demonstrate excellent between-person reliability (ranging from 0.95 to 0.99) and construct validity of cognitive EMA in both the sample of adults with T1D and community sample. Within-person reliability in both samples (ranging from 0.20 to 0.80) was comparable with that observed in previous studies in healthy older adults. As expected, the full-length baseline and EMA versions of TestMyBrain tests correlated highly with one another and loaded together on the expected cognitive domains when using exploratory factor analysis. Interruptions had higher negative impacts on accuracy-based outcomes (ß=-.34 to -.26; all P values <.001) than on reaction time-based outcomes (ß=-.07 to -.02; P<.001 to P=.40). CONCLUSIONS: We demonstrated that ultrabrief mobile assessments are both reliable and valid across 2 very different clinic versus community samples, despite the conditions in which cognitive EMAs are administered, which are often associated with more noise and variability. The psychometric characteristics described here should be leveraged appropriately depending on the goals of the cognitive assessment (eg, diagnostic vs everyday functioning) and the population being studied.


Assuntos
Diabetes Mellitus Tipo 1 , Avaliação Momentânea Ecológica , Humanos , Idoso , Reprodutibilidade dos Testes , Cognição , Coleta de Dados
6.
Proc Natl Acad Sci U S A ; 114(7): 1548-1553, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137839

RESUMO

The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.


Assuntos
Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Nucleotídeos/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
7.
Bioinformatics ; 34(16): 2862-2864, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648573

RESUMO

Motivation: Toehold switches are a class of RNAs with a hairpin loop that can be unfolded upon binding a trigger RNA, thereby exposing a ribosome binding site (RBS) and permitting translation of the reporter protein. They have been shown very useful in detecting a variety of targets including RNAs from Zika and Ebola viruses. The base complementation between the toehold switch and the trigger RNA also makes it sensitive to sequence variations. Design of toehold switches involves a series of considerations related to their sequence properties, structures and specificities. Results: Here we present the first comprehensive web tool for designing toehold switches. We also propose a score for predicting the efficacy of designed toehold switches based on properties learned from ∼180 experimentally tested switches. Availability and implementation: The toehold switch web tool is available at https://yiplab.cse.cuhk.edu.hk/toehold/.


Assuntos
Design de Software , Sítios de Ligação , Conformação de Ácido Nucleico , RNA/química , Ribossomos/metabolismo
8.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560529

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

9.
Cell Rep ; 42(5): 112418, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083332

RESUMO

Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Camundongos , Viremia , Macaca mulatta , Surtos de Doenças , Receptores Imunológicos
10.
Res Child Adolesc Psychopathol ; 51(12): 1919-1932, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37160577

RESUMO

Severity of maternal childhood maltreatment has been associated with lower infant grey matter volume and amygdala volume during the first two years of life. A developing literature argues that effects of threat (abuse) and of deprivation (neglect) should be assessed separately because these distinct aspects of adversity may have different impacts on developmental outcomes. However, distinct effects of threat versus deprivation have not been assessed in relation to intergenerational effects of child maltreatment. The objective of this study was to separately assess the links of maternal childhood abuse and neglect with infant grey matter volume (GMV), white matter volume (WMV), amygdala and hippocampal volume. Participants included 57 mother-infant dyads. Mothers were assessed for childhood abuse and neglect using the Adverse Childhood Experiences (ACE) questionnaire in a sample enriched for childhood maltreatment. Between 4 and 24 months (M age = 12.28 months, SD = 5.99), under natural sleep, infants completed an MRI using a 3.0 T Siemens scanner. GMV, WMV, amygdala and hippocampal volumes were extracted via automated segmentation. Maternal history of neglect, but not abuse, was associated with lower infant GMV. Maternal history of abuse, but not neglect, interacted with age such that abuse was associated with smaller infant amygdala volume at older ages. Results are consistent with a threat versus deprivation framework, in which threat impacts limbic regions central to the stress response, whereas deprivation impacts areas more central to cognitive function. Further studies are needed to identify mechanisms contributing to these differential intergenerational associations of threat versus deprivation.


Assuntos
Maus-Tratos Infantis , Desenvolvimento Infantil , Feminino , Humanos , Criança , Lactente , Encéfalo/diagnóstico por imagem , Mães/psicologia , Hipocampo/diagnóstico por imagem , Maus-Tratos Infantis/psicologia
11.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609165

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement: Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.

12.
ACS Mater Au ; 2(5): 596-601, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36855624

RESUMO

In this work, we demonstrate the use of direct ink writing (DIW) technology to create 3D catalytic electrodes for electrochemical applications. Hybrid MoS2/graphene aerogels are made by mixing commercially available MoS2 and graphene oxide powders into a thixotropic, high concentration, viscous ink. A porous 3D structure of 2D graphene sheets and MoS2 particles was created after post treatment by freeze-drying and reducing graphene oxide through annealing. The composition and morphology of the samples were fully characterized through XPS, BET, and SEM/EDS. The resulting 3D printed MoS2/graphene aerogel electrodes had a remarkable electrochemically active surface area (>1700 cm2) and were able to achieve currents over 100 mA in acidic media. Notably, the catalytic activity of the MoS2/graphene aerogel electrodes was maintained with minimal loss in surface area compared to the non-3D printed electrodes, suggesting that DIW can be a viable method of producing durable electrodes with a high surface area for water splitting. This demonstrates that 3D printing a MoS2/graphene 3D porous network directly using our approach not only improves electrolyte dispersion and facilitates catalyst utilization but also provides multidimensional electron transport channels for improving electronic conductivity.

13.
J Clin Exp Neuropsychol ; 43(8): 786-795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34907842

RESUMO

INTRODUCTION: To allow continued administration of neuropsychological evaluations remotely during the pandemic, tests from the not-for-profit platform, TestMyBrain.org (TMB), were used to develop the TMB Digital Neuropsychology Toolkit (DNT). This study details the psychometric characteristics of the DNT, as well as the infrastructure and development of the DNT. METHOD: The DNT was primarily distributed for clinical use, with (72.8%) of individuals requesting access for clinical purposes. To assess reliability and validity of the DNT, anonymous data from DNT test administrations were analyzed and compared to a large, non-clinical normative sample from TMB. RESULTS: DNT test scores showed acceptable to very good split-half reliability (.68-.99). Factor analysis revealed three latent factors, corresponding to processing speed, working memory, and a broader general cognitive ability factor that included perceptual reasoning and episodic memory. Average test scores were slightly poorer for the DNT sample than for the TMB comparison sample, as expected given the clinical use of the DNT. CONCLUSIONS: Initial estimates of reliability and validity of DNT tests support their use as digital measures of neuropsychological functioning. Tests within cognitive domains correlated highly with each other and demonstrated good reliability and validity. Future work will seek to validate DNT tests in specific clinical populations and determine best practices for using DNT outcome measures to assess engagement and psychological symptomatology.


Assuntos
Transtornos Cognitivos , Neuropsicologia , Humanos , Testes Neuropsicológicos , Psicometria , Reprodutibilidade dos Testes
14.
Sci Rep ; 5: 14909, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449534

RESUMO

In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1-α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome.


Assuntos
Adenosina Trifosfatases/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sítios de Ligação/genética , Immunoblotting , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Proteínas Ubiquitinadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA