Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 7(44): 39671-39679, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385897

RESUMO

Organic nitrates make an important contribution to the formation of secondary organic aerosols, but the formation mechanisms of organic nitrates are not fully understood at the molecular level. In the present work, we explore a new route for the formation of organic nitrates in the reaction of formaldehyde (HCHO) with nitric acid (HNO3) catalyzed by water (H2O), ammonia (NH3), and dimethylamine ((CH3)2NH) using theoretical methods. The present results using CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S unravel that dimethylamine has a stronger catalytic ability in the reaction of HCHO with HNO3, reducing the barrier by 21.97 kcal/mol, while water and ammonia only decrease the energy barrier by 7.35 and 13.56 kcal/mol, respectively. In addition, the calculated kinetics combined with the corresponding concentrations of these species show that the HCHO + HNO3 + (CH3)2NH reaction can compete well with the naked HCHO + HNO3 reaction at 200-240 K, which may make certain contributions to the formation of organic nitrates under some atmospheric conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA