Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 20138-20147, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934470

RESUMO

Microplastics (MPs) pollution and dissolved organic matter (DOM) affect soil quality and functions. However, the effect of MPs on DOM and underlying mechanisms have not been clarified, which poses a challenge to maintaining soil health. Under environmentally relevant conditions, we evaluated the major role of polypropylene particles at four micron-level sizes (20, 200, and 500 µm and mixed) in regulating changes in soil DOM content. We found that an increase in soil aeration by medium and high-intensity (>0.5%) MPs may reduce NH4+ leaching by accelerating soil nitrification. However, MPs have a positive effect on soil nutrient retention through the adsorption of PO43- (13.30-34.46%) and NH4+ (9.03-19.65%) and their leached dissolved organic carbon (MP-leached dissolved organic carbon, MP-DOC), thereby maintaining the dynamic balance of soil nutrients. The regulating ion (Ca2+) is also an important competitor in the MP-DOM adsorption system, and changes in its intensity are dynamically involved in the adsorption process. These findings can help predict the response of soil processes, especially nutrient cycling, to persistent anthropogenic stressors, improve risk management policies on MPs, and facilitate the protection of soil health and function, especially in future agricultural contexts.


Assuntos
Microplásticos , Solo , Matéria Orgânica Dissolvida , Plásticos , Carbono , China
2.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072901

RESUMO

The areca (Areca catechu L.) nut kernel (ANK) is a good potential protein source for its high protein content of 9.89-14.62 g/100 g and a high yield of around 300,000 tons per year in China. However, utilization of the areca nut kernel is limited. To expand the usage of ANK in pharmaceutical or foods industries, areca nut kernel globulin was extracted and angiotensin-I converting enzyme (ACE) inhibition peptides were prepared and identified using gel chromatography, reversed phase HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening. Finally, a novel ACE-inhibitory heptapeptide (Ala-Pro-Lys-Ile-Glu-Glu-Val) was identified and chemically synthesized. The combination pattern between APKIEEV and ACE, and the inhibition kinetics, antihypertensive effect and endothlein-1 inhibition activity of APKIEEV were studied. The results of the molecular docking demonstrated that APKIEEV could bind to four active sites (not the key active sites) of ACE via short hydrogen bonds and demonstrated high ACE-inhibitory activity (IC50: 550.41 µmol/L). Moreover, APKIEEV exhibited a significantly lowering effect on both the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats, and had considerable suppression ability on intracellular endothelin-1. These results highlight the potential usage of APKIEEV as ingredients of antihypertensive drugs or functional foods.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Areca/metabolismo , Globulinas/farmacologia , Sequência de Aminoácidos/genética , Animais , Anti-Hipertensivos/química , Pressão Sanguínea/efeitos dos fármacos , Globulinas/metabolismo , Hipertensão/metabolismo , Masculino , Simulação de Acoplamento Molecular/métodos , Nozes/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Ratos , Ratos Endogâmicos SHR , Espectrometria de Massas em Tandem/métodos
3.
RSC Adv ; 14(32): 23037-23047, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040699

RESUMO

Jujube kernel fibre (JKF) could serve as a renewable, abundant, low-cost, and environmentally friendly adsorbent for wastewater if its adsorption capacities are improved. However, data on the modification of JKF, especially on the combination of biological and chemical modifications, are scarce. Therefore, for the first time, we studied the effect of mixed enzymolysis alone or combined with acetylation or carboxymethylation on the structure and adsorption capacities of JKF. After these modifications, the microstructure of JKF became more porous, and its soluble fibre and extractable polyphenol contents, surface area and adsorption capacities for nitrite, copper, and lead ions were all significantly improved (P < 0.05). Meanwhile, mixed enzymatic hydrolysis and acetylation treated JKF showed the highest surface hydrophobicity (43.57) and oil-adsorption ability (4.47 g g-1), while mixed enzymatic hydrolysis and carboxymethylation treated JKF exhibited the highest water adsorption ability (10.66 g g-1), water expansion ability (8.50 mL g-1), and lead and copper ion chelating abilities. Additionally, mixed enzymatic hydrolyzed JKF had the highest nitrite-ion-adsorption ability (10.57 µmol g-1). It can be concluded that mixed enzymolysis combined with carboxymethylation is an optimal way to increase the hydration properties and heavy-metal-adsorption capacity of JKF, while mixed enzymolysis combined with acetylation is an effective approach to enhance the oil-adsorption capacity of JKF.

4.
Cell Stem Cell ; 31(5): 694-716.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38631356

RESUMO

Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.


Assuntos
Senescência Celular , Homeostase , RNA Nuclear , Animais , RNA Nuclear/metabolismo , Camundongos , Diferenciação Celular , Linhagem da Célula , Núcleo Celular/metabolismo , Transcriptoma/genética , Humanos
5.
J Oral Microbiol ; 15(1): 2253675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691880

RESUMO

Effective control of gene expression is crucial for understanding gene function in both eukaryotic and prokaryotic cells. While several inducible gene expression systems have been reported in Streptococcus mutans, a conditional pathogen that causes dental caries, the significant non-inducible basal expression in these systems seriously limits their utility, especially when studying lethal gene functions and molecular mechanisms. We introduce a tightly controlled xylose-inducible gene expression system, TC-Xyl, for Streptococcus mutans. Western blot results and fluorescence microscopy analysis indicate that TC-Xyl exhibits an extremely low non-inducible basal expression level and a sufficiently high expression level post-induction. Further, by constructing a mutation in which the only source FtsZ is under the control of TC-Xyl, we preliminarily explored the function of the ftsz gene. We found that FtsZ depletion is lethal to Streptococcus mutans, resulting in abnormal round cell shape and mini cell formation, suggesting FtsZ's role in maintaining cell shape stability.

6.
Viruses ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37632103

RESUMO

OTUD6A is a deubiquitinase that plays crucial roles in various human diseases. However, the precise regulatory mechanism of OTUD6A remains unclear. In this study, we found that OTUD6A significantly inhibited the production of type I interferon. Consistently, peritoneal macrophages and bone marrow-derived macrophages from Otud6a-/- mice produced more type I interferon after virus infection compared to cells from WT mice. Otud6a-/-- mice also exhibited increased resistance to lethal HSV-1 and VSV infections, as well as LPS attacks due to decreased inflammatory responses. Mechanistically, mass spectrometry results revealed that UBC13 was an OTUD6A-interacting protein, and the interaction was significantly enhanced after HSV-1 stimulation. Taken together, our findings suggest that OTUD6A plays a crucial role in the innate immune response and may serve as a potential therapeutic target for infectious disease.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Humanos , Animais , Camundongos , Imunidade Inata , Macrófagos , Enzimas Desubiquitinantes
7.
Environ Int ; 165: 107293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609499

RESUMO

Microplastic pollution and changes to soil hydraulic characteristics affect the physical properties and functions of soil; however, knowledge remains limited on how microplastics influence soil hydraulic properties. Nonetheless, it is important to understand these relationships to maintain soil health and ensure sustainable land use, especially in the current "plastic age." This case study explored how different particle sizes (20, 200, and 500 µm) and concentrations (up to 6%) of polypropylene microplastics affect the hydraulic properties of three soil textures (loam, clay, and sand). The results show that addition of microplastic reduced the saturated hydraulic conductivity (Ks) of the three soils by 69.79%, 77.11%, and 95.79%, respectively. These observed adverse effects of microplastics on the infiltration properties of the three studied soils were influenced by particle size, with larger particles having the weakest effect. Furthermore, microplastic addition reduced the water retention capacity of the clay to a greater extent than that of the loam and sand. In the case of clay, the slope of the water characteristic curve (SWRC) increased significantly, whereas the saturated water content (θs) and residual water content (θr) curves decreased significantly. Importantly, the interaction between microplastics and soil alters the soil pore-size distribution and reduces pore availability. Overall, this case study demonstrates the impact of microplastic on the hydraulic properties of different soil textures, which can inform management strategies to minimize the adverse effects of microplastic accumulation on yields where plastics are used in agricultural production.


Assuntos
Microplásticos , Solo , Argila , Plásticos , Areia , Água/análise
8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 8): o2139, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22091156

RESUMO

In the title compound, C(17)H(19)N(3)O·CH(3)OH, the hydrazone mol-ecule exists in a trans geometry with respect to the methyl-idene unit and the dihedral angle between the two substituted benzene rings is 42.6 (2)°. In the crystal, the components are linked through N-H⋯O and O-H⋯O hydrogen bonds, forming [100] chains of alternating hydrazone and methanol mol-ecules.

9.
Mol Plant ; 14(6): 1012-1023, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930508

RESUMO

The genetic improvement of nitrogen use efficiency (NUE) of crops is vital for grain productivity and sustainable agriculture. However, the regulatory mechanism of NUE remains largely elusive. Here, we report that the rice Grain number, plant height, and heading date7 (Ghd7) gene genetically acts upstream of ABC1 REPRESSOR1 (ARE1), a negative regulator of NUE, to positively regulate nitrogen utilization. As a transcriptional repressor, Ghd7 directly binds to two Evening Element-like motifs in the promoter and intron 1 of ARE1, likely in a cooperative manner, to repress its expression. Ghd7 and ARE1 display diurnal expression patterns in an inverse oscillation manner, mirroring a regulatory scheme based on these two loci. Analysis of a panel of 2656 rice varieties suggests that the elite alleles of Ghd7 and ARE1 have undergone diversifying selection during breeding. Moreover, the allelic distribution of Ghd7 and ARE1 is associated with the soil nitrogen deposition rate in East Asia and South Asia. Remarkably, the combination of the Ghd7 and ARE1 elite alleles substantially improves NUE and yield performance under nitrogen-limiting conditions. Collectively, these results define a Ghd7-ARE1-based regulatory mechanism of nitrogen utilization, providing useful targets for genetic improvement of rice NUE.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Grão Comestível/química , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA