Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(35): 19144-19154, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34062043

RESUMO

We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.

2.
Proc Natl Acad Sci U S A ; 114(1): 27-32, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994135

RESUMO

Violins made by Antonio Stradivari are renowned for having been the preferred instruments of many leading violinists for over two centuries. There have been long-standing questions about whether wood used by Stradivari possessed unique properties compared with modern tonewood for violin making. Analyses of maple samples removed from four Stradivari and a Guarneri instrument revealed highly distinct organic and inorganic compositions compared with modern maples. By solid-state 13C NMR spectroscopy, we observed that about one-third of hemicellulose had decomposed after three centuries, accompanied by signs of lignin oxidation. No apparent changes in cellulose were detected by NMR and synchrotron X-ray diffraction. By thermogravimetric analysis, historical maples exhibited reduced equilibrium moisture content. In differential scanning calorimetry measurements, only maples from Stradivari violins, but not his cellos, exhibited unusual thermooxidation patterns distinct from natural wood. Elemental analyses by inductively coupled plasma mass spectrometry suggested that Stradivari's maples were treated with complex mineral preservatives containing Al, Ca, Cu, Na, K, and Zn. This type of chemical seasoning was an unusual practice, unknown to later generations of violin makers. In their current state, maples in Stradivari violins have very different chemical properties compared with their modern counterparts, likely due to the combined effects of aging, chemical treatments, and vibrations. These findings may inspire further chemical experimentation with tonewood processing for instrument making in the 21st century.

3.
J Biol Chem ; 289(10): 6639-6655, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24451374

RESUMO

The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Simulação por Computador , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Vírion/química , Vírion/genética
4.
Steroids ; 77(3): 185-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155023

RESUMO

Solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy has been applied to 17ß-estradiol (E2) and 17α-estradiol (E2α), to analyze the steroidal ring conformations of the two isomers in the absence and presence of lipids at the atomic level. In the absence of lipid, the high-resolution (13)C NMR signals of E2 in a powdered form show only singlet patterns, suggesting a single ring conformation. In contrast, the (13)C signals of E2α reveal multiplet patterns with splittings of 20-300Hz, implying multiple ring conformations. In the presence of a mimic of the lipid environment, made by mixing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) in a molar ratio 3:1, E2 and E2α revealed multiplet patterns different from those seen in the absence of lipids, indicating that the two isomers adopt multiple conformations in the lipid environment. In this work, on the basis of chemical shift isotropy and anisotropy analysis, we demonstrated that E2 and E2α prefer to adopt multiple steroidal ring conformations in the presence of a lipid environment, distinct from that observed in solution phase and powdered form.


Assuntos
Estradiol/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Anisotropia , Dimiristoilfosfatidilcolina/química , Humanos , Isomerismo , Lipídeos/química , Espectroscopia de Ressonância Magnética/normas , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Difração de Raios X
5.
Steroids ; 76(6): 558-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21335019

RESUMO

Solid-state (1)H/(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy has been applied to two steroid compounds: dehydroepiandrosterone (DHEA) and spironolactone (SPI), to analyze their conformations at the atomic level. In the absence of lipid, the high-resolution (13)C CP/MAS NMR signals of DHEA and SPI in a powder form reveal multiple patterns, with splittings of 30-160 Hz, indicating the existence of multiple conformations. In the mimic lipid environment formed by mixing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) in a molar ratio 3:1, the resulting DHEA and SPI spectra revealed mostly singlet patterns, suggesting that these steroids undergo a conformational change leading to a specific conformation in the lipid environment. Evidence from chemical shift isotropy and anisotropy analysis indicates that DHEA might adopt conformations subtly different from that seen in solution and in the powder form. In conclusion, we demonstrate by solid-state NMR that the structures of DHEA and SPI may adopt slightly different conformations in different chemical environments.


Assuntos
Desidroepiandrosterona/química , Lipídeos/química , Espironolactona/química , Isótopos de Carbono , Desidroepiandrosterona/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Espironolactona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA