RESUMO
Grey matter (GM) atrophies are observed in multiple sclerosis, neuromyelitis optica spectrum disorders [NMOSD; both anti-aquaporin-4 antibody-positive (AQP4+) and -negative (AQP4-) subtypes] and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Revealing the pathogenesis of brain atrophy in these disorders would help their differential diagnosis and guide therapeutic strategies. To determine the neurobiological underpinnings of GM atrophies in multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD and MOGAD, we conducted a virtual histology analysis that links T1-weighted image derived GM atrophy and gene expression using a multicentre cohort of 324 patients with multiple sclerosis, 197 patients with AQP4+ NMOSD, 75 patients with AQP4- NMOSD, 47 patients with MOGAD and 2169 healthy control subjects. First, interregional GM atrophy profiles across the cortical and subcortical regions were determined using Cohen's d between patients with multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD or MOGAD and healthy controls. The GM atrophy profiles were then spatially correlated with the gene expression levels extracted from the Allen Human Brain Atlas, respectively. Finally, we explored the virtual histology of clinical-feature relevant GM atrophy using a subgroup analysis that stratified by physical disability, disease duration, number of relapses, lesion burden and cognitive function. Multiple sclerosis showed a severe widespread GM atrophy pattern, mainly involving subcortical nuclei and brainstem. AQP4+ NMOSD showed an obvious widespread pattern of GM atrophy, predominately located in occipital cortex as well as cerebellum. AQP4- NMOSD showed a mild widespread GM atrophy pattern, mainly located in frontal and parietal cortices. MOGAD showed GM atrophy mainly involving the frontal and temporal cortices. High expression of genes specific to microglia, astrocytes, oligodendrocytes and endothelial cells in multiple sclerosis, S1 pyramidal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD, had spatial correlations with GM atrophy profile, while no atrophy profile-related gene expression was found in AQP4- NMOSD. Virtual histology of clinical feature-relevant GM atrophy pointed mainly to the shared neuronal and endothelial cells, among the four neuroinflammatory diseases. The unique underlying virtual histology patterns were microglia, astrocytes and oligodendrocytes for multiple sclerosis; astrocytes for AQP4+ NMOSD; and oligodendrocytes for MOGAD. Neuronal and endothelial cells were shared potential targets across these neuroinflammatory diseases. These findings may help the differential diagnoses of these diseases and promote the use of optimal therapeutic strategies.
Assuntos
Atrofia , Substância Cinzenta , Esclerose Múltipla , Neuromielite Óptica , Humanos , Masculino , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Feminino , Pessoa de Meia-Idade , Atrofia/patologia , Adulto , Neuromielite Óptica/patologia , Neuromielite Óptica/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico por imagem , Aquaporina 4 , Doenças Neuroinflamatórias/patologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Idoso , Glicoproteína Mielina-OligodendrócitoRESUMO
Identification of translocator protein-related genes involved in bensulfuron-methyl (BSM) uptake and transport in rice could facilitate the development of herbicide-tolerant cultivars by inactivating them. This study found that the OsCNGC12 mutants not only reduced BSM uptake but also compromised the Ca2 ⺠efflux caused by BSM in the roots, regulating dynamic equilibrium of Ca2 ⺠inside the cell and conferring non-target-site tolerance to BSM.
Assuntos
Herbicidas , Oryza , Herbicidas/farmacologia , Plântula/genética , CálcioRESUMO
OBJECTIVE: To develop a discrimination pipeline concerning both radiomics and spatial distribution features of brain lesions for discrimination of multiple sclerosis (MS), aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD), and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD). METHODS: Hyperintensity T2 lesions were delineated in 212 brain MRI scans of MS (n = 63), NMOSD (n = 87), and MOGAD (n = 45) patients. To avoid the effect of fixed training/test dataset sampling when developing machine learning models, patients were allocated into 4 sub-groups for cross-validation. For each scan, 351 radiomics and 27 spatial distribution features were extracted. Three models, i.e., multi-lesion radiomics, spatial distribution, and joint models, were constructed using random forest and logistic regression algorithms for differentiating: MS from the others (MS models) and MOGAD from NMOSD (MOG-NMO models), respectively. Then, the joint models were combined with demographic characteristics (i.e., age and sex) to create MS and MOG-NMO discriminators, respectively, based on which a three-disease discrimination pipeline was generated and compared with radiologists. RESULTS: For classification of both MS-others and MOG-NMO, the joint models performed better than radiomics or spatial distribution model solely. The MS discriminator achieved AUC = 0.909 ± 0.027 and bias-corrected C-index = 0.909 ± 0.027, and the MOG-NMO discriminator achieved AUC = 0.880 ± 0.064 and bias-corrected C-index = 0.883 ± 0.068. The three-disease discrimination pipeline differentiated MS, NMOSD, and MOGAD patients with 75.0% accuracy, prominently outperforming the three radiologists (47.6%, 56.6%, and 66.0%). CONCLUSIONS: The proposed pipeline integrating multi-lesion radiomics and spatial distribution features could effectively differentiate MS, NMOSD, and MOGAD. CLINICAL RELEVANCE STATEMENT: The discrimination pipeline merging both radiomics and spatial distribution features of brain lesions may facilitate the differential diagnoses of multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder. KEY POINTS: ⢠Our study introduces an approach by combining radiomics and spatial distribution models. ⢠The joint model exhibited superior performance in distinguishing multiple sclerosis from aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorder and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder as well as discriminating the latter two diseases. ⢠The three-disease discrimination pipeline showcased remarkable accuracy, surpassing the performance of experienced radiologists, highlighting its potential as a valuable diagnostic tool.
Assuntos
Imunoglobulina G , Imageamento por Ressonância Magnética , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Glicoproteína Mielina-Oligodendrócito/imunologia , Pessoa de Meia-Idade , Diagnóstico Diferencial , Encéfalo/diagnóstico por imagem , Aquaporina 4/imunologia , RadiômicaRESUMO
OBJECTIVES: We aimed to characterize the brain abnormalities that are associated with the cognitive and physical performance of patients with relapsing-remitting multiple sclerosis (RRMS) using a deep learning algorithm. MATERIALS AND METHODS: Three-dimensional (3D) nnU-Net was employed to calculate a novel spatial abnormality map by T1-weighted images and 281 RRMS patients (Dataset-1, male/female = 101/180, median age [range] = 35.0 [17.0, 65.0] years) were categorized into subtypes. Comparison of clinical and MRI features between RRMS subtypes was conducted by Kruskal-Wallis test. Kaplan-Meier analysis was conducted to investigate disability progression in RRMS subtypes. Additional validation using two other RRMS datasets (Dataset-2, n = 33 and Dataset-3, n = 56) was conducted. RESULTS: Five RRMS subtypes were identified: (1) a Frontal-I subtype showing preserved cognitive performance and mild physical disability, and low risk of disability worsening; (2) a Frontal-II subtype showing low cognitive scores and severe physical disability with significant brain volume loss, and a high propensity for disability worsening; (3) a temporal-cerebellar subtype demonstrating lowest cognitive scores and severest physical disability among all subtypes but remaining relatively stable during follow-up; (4) an occipital subtype demonstrating similar clinical and imaging characteristics as the Frontal-II subtype, except a large number of relapses at baseline and preserved cognitive performance; and (5) a subcortical subtype showing preserved cognitive performance and low physical disability but a similar prognosis as the occipital and Frontal-II subtypes. Additional validation confirmed the above findings. CONCLUSION: Spatial abnormality maps can explain heterogeneity in cognitive and physical performance in RRMS and may contribute to stratified management. KEY POINTS: Question Can a deep learning algorithm characterize the brain abnormalities associated with the cognitive and physical performance of patients with RRMS? Findings Five RRMS subtypes were identified by the algorithm that demonstrated variable cognitive and physical performance. Clinical relevance The spatial abnormality maps derived RRMS subtypes had distinct cognitive and physical performances, which have a potential for individually tailored management.
RESUMO
To investigate the effect of stalk type on the metallization degrees in FeCl3-derived magnetic biochar (MBC), MBC was synthesized via an impregnation-pyrolysis method using six different stalks. The Fe0 content in MBC significantly influenced its magnetic properties and ostensibly governed its catalytic capabilities. Analysis of the interaction between stalks and FeCl3 revealed that the variation in metallization degrees, resulting from FeCl2 decomposition (6.1%) and stalk-mediated reduction (20.7%), was directly responsible for the observed differences in MBC metallization. The presence of oxygen-containing functional groups and fixed carbon appeared to promote metallization in MBC induced by reduction. A series of statistical analyses indicated that the cellulose, lignin, and hemicellulose content of the stalks were key factors contributing to differences in MBC metallization degrees. Further exploration revealed that hemicellulose and cellulose were more effective than lignin in enhancing metallization through FeCl2 decomposition and reduction. Constructing stalk models demonstrated that the variance in the content of these three biomass components across the six stalk types could lead to differences in the metallization degree attributable to reduction and FeCl2 decomposition, thereby affecting the overall metallization degree of MBC. A prediction model for MBC metallization degree was developed based on these findings. Moreover, the elevated Si content in some stalks facilitated the formation of Fe2(SiO4), which subsequently impeded the reduction process. This study provides a theoretical foundation for the informed selection of stalk feedstocks in the production of FeCl3-derived MBC.
Assuntos
Carvão Vegetal , Cloretos , Compostos Férricos , Pirólise , Carvão Vegetal/química , Compostos Férricos/química , Cloretos/química , Lignina/química , Celulose/química , PolissacarídeosRESUMO
Childhood obesity not only has a negative impact on a child's health but is also a significant risk factor for adult obesity and related metabolic disorders, making it a major global public health concern. Recent studies have revealed the crucial role of gut microbiota in the occurrence and development of obesity, in addition to genetic and lifestyle factors. In this study, we recruited 19 normal-weight children and 47 children with varying degrees of obesity. A questionnaire survey was conducted to inquire about the family background, lifestyle habits and dietary composition of the 66 children. Findings indicate that fathers of obese children tend to be obese themselves, while children with highly educated mothers are more likely to maintain a normal weight. Furthermore, overweight children tend to spend more time on electronic devices and less time on physical activities compared to their normal-weight counterparts. Obese children exhibit significant differences in breakfast and dinner dietary composition when compared to children with normal weight. Additionally, the gut microbiota of these 66 children was analyzed using 16S rRNA sequencing. Analysis of gut microbiota composition showed similar compositions among children with varying degrees of obesity, but significant differences were observed in comparison to normal-weight children. Obese children exhibited a reduced proportion of Bacteroidota and an increased proportion of Firmicutes, resulting in an elevated Firmicutes/Bacteroidota ratio. Moreover, Actinobacteriota were found to be increased in the gut microbiota of children with varying degrees of obesity. PICRUSt analysis indicated significant metabolic differences in the microbiota functions between obese and normal-weight children, suggesting the composition of gut microbiota could be a crucial factor contributing to obesity. These findings provide valuable insights for the treatment of childhood obesity.
Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Feminino , Adulto , Criança , Humanos , RNA Ribossômico 16S/genética , Dieta , ChinaRESUMO
OBJECTIVE: To evaluate the clinical effectiveness of antibiotic bone cement combined with the lobulated perforator flap based on the descending branch of the lateral circumflex femoral artery (d-LCFA) in the treatment of infected traumatic tissue defects in the foot, in accordance with the Enhanced Recovery after Surgery (ERAS) concept. METHODS: From December 2019 to November 2022, 10 patients with infected traumatic tissue defects of the foot were treated with antibiotic bone cement combined with the d-LCFA lobulated perforator flap. The cohort comprised 6 males and 4 females, aged 21 to 67 years. Initial infection control was achieved through debridement and coverage with antibiotic bone cement, requiring one debridement in nine cases and two debridements in one case. Following infection control, the tissue defects were reconstructed utilizing the d-LCFA lobulated perforator flap, with the donor site closed primarily. The flap area ranged from 12 cm×6 cm to 31 cm×7 cm. Postoperative follow-up included evaluation of flap survival, donor site healing, and ambulatory function of the foot. RESULTS: The follow-up period ranged from 7 to 24 months, averaging 14 months. Infection control was achieved successfully in all cases. The flaps exhibited excellent survival rates and the donor site healed by first intention. Based on the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale, pain and function were evaluated as excellent in 3 cases, good in 5 cases, and moderate in 2 cases. CONCLUSION: The application of antibiotic bone cement combined with the d-LCFA lobulated perforator flap is an effective treatment for infected traumatic tissue defects of the foot with the advantages of simplicity, high repeatability, and precise curative effects. The application of the d-LCFA lobulated perforator flap in wound repair causes minimal damage to the donor site, shortens hospital stays, lowers medical expenses, and accelerates patient rehabilitation, aligning with the ERAS concept. Therefore, it is a practice worth promoting in clinical use.
Assuntos
Antibacterianos , Cimentos Ósseos , Desbridamento , Artéria Femoral , Traumatismos do Pé , Retalho Perfurante , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Retalho Perfurante/irrigação sanguínea , Idoso , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Traumatismos do Pé/cirurgia , Cimentos Ósseos/uso terapêutico , Artéria Femoral/cirurgia , Desbridamento/métodos , Adulto Jovem , Procedimentos de Cirurgia Plástica/métodos , Resultado do Tratamento , Lesões dos Tecidos Moles/cirurgia , Estudos Retrospectivos , CicatrizaçãoRESUMO
Objective: Knee osteoarthritis (KOA) is a prevalent joint disease characterized by cartilage degradation and periarticular bone hyperplasia. Accurate assessment of knee alignment is fundamental for effective treatment, as it directly influences surgical planning and postoperative outcomes. This study assesses the effectiveness of laser marker technology in KOA treatment and its precision in reconstructing lower extremity alignment. Methods: Sixty KOA patients admitted to our orthopedics department from March 2020 to December 2021 were randomized into two groups via random number table method, with 30 patients in each. All patients underwent knee replacement surgery. The experiment group received laser marker assessments, while the control group had X-ray examinations. Postoperative Hospital for Special Surgery (HSS) scores and knee mobility of the patients were compared. Results: At 6 weeks, 3 months, and 6 months postoperatively, the experimental group exhibited significnatly higher HSS scores (89.75±3.81, 91.78±2.15, and 91.84±1.79) than the control group (84.28±2.56, 87.15±1.98, and 88.02±1.21) (P < .05). Better knee mobility (111.17±4.94) was observed in the experimental group versus the control group (108.07±3.08) at 6 months postoperatively (P < .05). Conclusion: Laser marker technology provides a clear visualization of lower extremity structures, offering a comprehensive assessment of KOA deformities. This could potentially lead to improved diagnostic precision and enhanced surgical outcomes. The study encourages further research into the broader application of laser marker technology in knee osteoarthritis treatment, such as the evaluation of its cost-effectiveness versus traditional methods.
Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Artroplastia do Joelho , Extremidade Inferior/cirurgia , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiopatologia , Amplitude de Movimento Articular , Resultado do TratamentoRESUMO
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Peritônio , Macrófagos Peritoneais , Biomarcadores , Macrófagos , Microambiente Tumoral/genética , FibrinogênioRESUMO
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.
Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Masculino , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Osteoartrite/metabolismo , Cartilagem/metabolismo , Cartilagem Articular/patologiaRESUMO
BACKGROUND: The cerebellum plays key roles in the pathology of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), but the way in which these conditions affect how the cerebellum communicates with the rest of the brain (its connectome) and associated genetic correlates remains largely unknown. METHODS: Combining multimodal MRI data from 208 MS patients, 200 NMOSD patients and 228 healthy controls and brain-wide transcriptional data, this study characterized convergent and divergent alterations in within-cerebellar and cerebello-cerebral morphological and functional connectivity in MS and NMOSD, and further explored the association between the connectivity alterations and gene expression profiles. RESULTS: Despite numerous common alterations in the two conditions, diagnosis-specific increases in cerebellar morphological connectivity were found in MS within the cerebellar secondary motor module, and in NMOSD between cerebellar primary motor module and cerebral motor- and sensory-related areas. Both diseases also exhibited decreased functional connectivity between cerebellar motor modules and cerebral association cortices with MS-specific decreases within cerebellar secondary motor module and NMOSD-specific decreases between cerebellar motor modules and cerebral limbic and default-mode regions. Transcriptional data explained > 37.5% variance of the cerebellar functional alterations in MS with the most correlated genes enriched in signaling and ion transport-related processes and preferentially located in excitatory and inhibitory neurons. For NMOSD, similar results were found but with the most correlated genes also preferentially located in astrocytes and microglia. Finally, we showed that cerebellar connectivity can help distinguish the three groups from each other with morphological connectivity as predominant features for differentiating the patients from controls while functional connectivity for discriminating the two diseases. CONCLUSIONS: We demonstrate convergent and divergent cerebellar connectome alterations and associated transcriptomic signatures between MS and NMOSD, providing insight into shared and unique neurobiological mechanisms underlying these two diseases.
Assuntos
Conectoma , Esclerose Múltipla , Neuromielite Óptica , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/genética , Neuromielite Óptica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Cerebelo/patologiaRESUMO
We present the design and fabrication of a 3 × 1 signal combiner with high beam quality based on supermode theory. For improving beam quality, the fiber with core diameter of 34â µm and numerical aperture of 0.11 is first chosen as the output fiber. An 8.89â kW output laser with a power transmission efficiency of 97.2% and a low temperature rise coefficient of 3.5 °C/ kW at >8â kW is obtained when the combiner launched by three Yb-doped fiber lasers. In addition, the energy density distribution of the output beam is Gaussian-like and M2 factor is 2.32, which is the best beam quality compared with the presented signal combiners for high power laser to the best of our knowledge.
RESUMO
In this work, a record output power of 4.6â kW linearly polarized and narrow-linewidth fiber amplifier based on an optimized fiber oscillator laser (FOL) seed was realized by employing a homemade polarization-maintaining Yb-doped fiber (PMYDF), corresponding to a slope efficiency of 79.5% and a 3â dB linewidth of 0.3452â nm. Through an effective strategy relying on decreasing the transmission fiber length from 200 m to 120 m and adding a chirped and tilted fiber Bragg grating (CTFBG), the stimulated Raman scattering (SRS) effects were well-suppressed. By applying the forward combiner with the interconnection between the pump arms into the MOPA system, the MI threshold is increased by more than 560 W and the slope efficiency of the upgraded MOPA system is boosted by 5%. During the experimental process of power amplification, the polarization extinction ratio (PER) remains higher than 15â dB, and a near-diffraction-limited output beam at the laser power of 2980â W was measured with the M2x = 1.314 and M2y = 1.311.
RESUMO
The 1.5-µm fiber laser is widely used in the fields of laser lidar, remote sensing, and gas monitoring because of its advantages of being eye-safe and exhibiting low atmospheric transmission loss. However, due to the â¼1-µm amplified spontaneous emission (ASE) of the Er/Yb co-doped fiber (EYDF), it is difficult to improve the laser power. Here, we simulated the effect of the Er3+ concentration and the seed power on â¼1-µm ASE, and fabricated a large mode area EYDF by the modified chemical vapor deposition process. Additionally, a piece of ytterbium-doped fiber was introduced into the master oscillator power amplifier (MOPA) configuration to absorb the generated â¼1-µm ASE simultaneously. Experimental results show that an output power of 345 W with a slope efficiency of 43% at 1535â nm is obtained in an all-fiber configuration, profiting from effective suppression of â¼ 1-µm ASE. To the best of our knowledge, this is the highest output power available with an Er/Yb co-doped fiber from an all-fiber MOPA configuration.
RESUMO
OBJECTIVE: To evaluate the clinical significance of deep learning-derived brain age prediction in neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting multiple sclerosis (RRMS). METHODS: This cohort study used data retrospectively collected from 6 tertiary neurological centres in China between 2009 and 2018. In total, 199 patients with NMOSD and 200 patients with RRMS were studied alongside 269 healthy controls. Clinical follow-up was available in 85 patients with NMOSD and 124 patients with RRMS (mean duration NMOSD=5.8±1.9 (1.9-9.9) years, RRMS=5.2±1.7 (1.5-9.2) years). Deep learning was used to learn 'brain age' from MRI scans in the healthy controls and estimate the brain age gap (BAG) in patients. RESULTS: A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 years) groups compared with healthy controls. A higher baseline disability score and advanced brain volume loss were associated with increased BAG in both patient groups. A longer disease duration was associated with increased BAG in RRMS. BAG significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD and RRMS. CONCLUSIONS: There is a clear BAG in NMOSD, although smaller than in RRMS. The BAG is a clinically relevant MRI marker in NMOSD and RRMS.
Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Estudos Retrospectivos , Estudos de Coortes , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Encéfalo/diagnóstico por imagemRESUMO
OBJECTIVES: To explore whether the combined analysis of motor and bulbar region of M1 on susceptibility-weighted imaging (SWI) can be a valid biomarker for amyotrophic lateral sclerosis (ALS). METHODS: Thirty-two non-demented ALS patients and 35 age- and gender-matched healthy controls (HC) were retrospectively recruited. SWI and 3D-T1-MPRAGE images were obtained from all individuals using a 3.0-T MRI scan. The bilateral posterior band of M1 was manually delineated by three neuroradiologists on phase images and subdivided into the motor and bulbar regions. We compared the phase values in two groups and performed a stratification analysis (ALSFRS-R score, duration, disease progression rate, and onset). Receiver operating characteristic (ROC) curves were also constructed. RESULTS: ALS group showed significantly increased phase values in M1 and the two subregions than the HC group, on the all and elderly level (p < 0.001, respectively). On all-age level comparison, negative correlations were found between phase values of M1 and clinical score and duration (p < 0.05, respectively). Similar associations were found in the motor region (p < 0.05, respectively). On both the total (p < 0.01) and elderly (p < 0.05) levels, there were positive relationships between disease progression rate and M1 phase values. In comparing ROC curves, the entire M1 showed the best diagnostic performance. CONCLUSIONS: Combining motor and bulbar analyses as an integral M1 region on SWI can improve ALS diagnosis performance, especially in the elderly. The phase value could be a valuable biomarker for ALS evaluation. KEY POINTS: ⢠Integrated analysis of the motor and bulbar as an entire M1 region on SWI can improve the diagnosis performance in ALS. ⢠Quantitative analysis of iron deposition by SWI measurement helps the clinical evaluation, especially for the elderly patients. ⢠Phase value, when combined with the disease progression rate, could be a valuable biomarker for ALS.
Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Humanos , Idoso , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Ferro , Estudos Retrospectivos , Córtex Motor/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Progressão da DoençaRESUMO
BACKGROUND: Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis secondary to central nervous system (CNS) infection is a unique subtype of the autoimmune-mediated disease, of which the imaging features are unclear. PURPOSE: To compare the brain magnetic resonance imaging (MRI) features between the anti-NMDAR encephalitis secondary to CNS infection and that without initial infection. MATERIAL AND METHODS: A total of 70 adult patients with anti-NMDAR encephalitis were retrospectively enrolled (24 in the post-infection group, 46 in the non-infection-related group). Their clinical and imaging features (lesion distribution, lesion shape, enhancement pattern, brain atrophy) were reviewed and summarized. Lesion distributions were compared between the two groups on lesion probability maps. RESULTS: The patients with normal brain MRI scans in the post-infection group were less than those in the non-infection related group (29% vs. 63%; P = 0.0113). Among the 24 patients in the post-infection group, visible lesions were shown at the anti-NMDAR encephalitis onset in 17 patients; lesion distribution was more diffuse than the non-infection-related group, showing higher lesion peak probabilities in the bilateral hippocampus, frontal lobe, temporal lobe, insula, and cingulate. The lesions with contrast enhancement were also more common in the post-infection group than the non-infection-related group (7/13 vs. 2/10). Brain atrophy was observed in eight patients in the post-infection group and three in the non-infection-related group. CONCLUSION: Anti-NMDAR encephalitis secondary to CNS infection has its imaging features-extensive lesion distribution, leptomeningeal enhancement, early atrophy, and necrosis-that could deepen the understanding of the pathophysiology and manifestation of the autoimmune encephalitis besides the classic type.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Infecções do Sistema Nervoso Central , Humanos , Adulto , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Ácido D-Aspártico , Estudos Retrospectivos , Ácido Aspártico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Infecções do Sistema Nervoso Central/complicações , Infecções do Sistema Nervoso Central/patologia , Atrofia/complicações , Atrofia/patologiaRESUMO
Aim: To compare the efficacy of arthroscopic debridement and olecranon fossa augmentation plasty in patients with elbow osteoarthritis. Methods: Eighty-four patients with elbow osteoarthritis admitted to our hospital were randomly divided into two groups with 42 cases in each group. Patients in the control group received expanded olecranon fossa plasty, while those in the observation group underwent arthroscopic debridement. Then the elbow joint function, VAS score, stress level, and incidence of complications were compared between the two groups. Results: The MEPS score, ROM level, and VAS score, as well as the expression of TNF-α, IL-6, and ACTH between the two groups, were significantly different before and after surgery (P < .05). Moreover, compared to patients in the control group, the MEPS score and ROM level of patients in the observation group were higher than those in the control group after six months since surgery, while VAS score, the levels of TNF-α, IL-6, and ACTH were lower on the second day after surgery (P < .05). Conclusion: Arthroscopic cleaning is more helpful in improving elbow joint function and alleviating pain in patients with osteoarthritis of the elbow compared to olecranon fossa augmentation and reconstruction surgery.
Assuntos
Cotovelo , Osteoartrite , Humanos , Hormônio Adrenocorticotrópico , Artroscopia , Desbridamento , Úmero , Interleucina-6 , Osteoartrite/cirurgia , Amplitude de Movimento Articular , Estudos Retrospectivos , Resultado do Tratamento , Fator de Necrose Tumoral alfaRESUMO
Genes that participate in the degradation or isolation of glyphosate in plants are promising, for they endow crops with herbicide tolerance with a low glyphosate residue. Recently, the aldo-keto reductase (AKR4) gene in Echinochloa colona (EcAKR4) was identified as a naturally evolved glyphosate-metabolism enzyme. Here, we compared the glyphosate-degradation ability of theAKR4 proteins from maize, soybean and rice, which belong to a clade containing EcAKR4 in the phylogenetic tree, by incubation of glyphosate with AKR proteins both in vivo and in vitro. The results indicated that, except for OsALR1, the other proteins were characterized as glyphosate-metabolism enzymes, with ZmAKR4 ranked the highest activity, and OsAKR4-1 and OsAKR4-2 exhibiting the highest activity among the AKR4 family in rice. Moreover, OsAKR4-1 was confirmed to endow glyphosate-tolerance at the plant level. Our study provides information on the mechanism underlying the glyphosate-degradation ability of AKR proteins in crops, which enables the development of glyphosate-resistant crops with a low glyphosate residue, mediated by AKRs.
Assuntos
Herbicidas , Oryza , Aldo-Ceto Redutases/genética , Oryza/genética , Glycine max/metabolismo , Zea mays/metabolismo , Filogenia , Herbicidas/farmacologia , Resistência a Herbicidas/genética , GlifosatoRESUMO
A low-numerical aperture (NA) confined-doped long-tapered (LCT) Yb-doped fiber is proposed and fabricated by modified chemical vapor deposition combined with solution doping technique. The LCT fiber owns the core NA of â¼0.05 and the gain dopant doping diameter ratio of â¼77%, with a core/cladding diameter of 25/400 µm at both ends and 37.5/600 µm in the middle. The laser performance is demonstrated by a bidirectional pumping all-fiber amplifier, of which a 4.18-kW single-mode (M2 factor â¼1.3) laser output is achieved with a slope efficiency of â¼82.8%. Compared with the conventional fiber, the co-pumped and counter-pumped transverse mode instability thresholds and beam quality of the LCT fiber are remarkably enhanced. Throughout the continuous operation, the LCT fiber amplifier presents high power stability with fluctuation of < 1%. These results indicate that LCT fiber has great potential in power scaling remaining excellent beam quality.