Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 43(11): 2615-2618, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856443

RESUMO

We investigate dense relativistic electron mirror generation from a micro-droplet driven by circularly polarized Laguerre-Gaussian lasers. The surface electrons are expelled from the droplet by the laser's radial electric field and evolve into dense sheets after leaving the droplet. These electrons are trapped in the potential well of the laser's transverse ponderomotive force and are steadily accelerated to about 100 MeV by the longitudinal electric field. Particle-in-cell simulations indicate that the relativistic electron mirrors are characterized by high beam charge, narrow energy spread, and large angular momentum, which can be utilized for bright X/γ-ray emission and photon vortex formation.

2.
Opt Express ; 25(18): 21583-21593, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041455

RESUMO

We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 1023 W/cm2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 1024 photons s-1mm-2mrad-2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e-e+ pair bunches are produced with the positron energy density as high as 1017 J/m3 and number of 109. Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

3.
Sci Rep ; 7(1): 17312, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229952

RESUMO

Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~1024 Wcm-2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022-23 Wcm-2. By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~1025 photons/s/mm2/mrad2/0.1%BW at 15 MeV and intensity of 5 × 1023 Wcm-2. Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 1022 cm-3 and flux of 1.6 × 1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA