Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 31(3): 701-714, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36523165

RESUMO

Limited T cell persistence restrains chimeric antigen receptor (CAR)-T cell therapy in solid tumors. To improve persistence, T cells have been engineered to secrete proinflammatory cytokines, but other possible methods have been understudied. Runx3 has been considered a master regulator of T cell development, cytotoxic T lymphocyte differentiation, and tissue-resident memory T (Trm)-cell formation. A study using a transgenic mouse model revealed that overexpression of Runx3 promoted T cell persistence in solid tumors. Here, we generated CAR-T cells overexpressing Runx3 (Run-CAR-T cells) and found that Run-CAR-T cells had long-lasting antitumor activities and achieved better tumor control than conventional CAR-T cells. We observed that more Run-CAR-T cells circulated in the peripheral blood and accumulated in tumor tissue, indicating that Runx3 coexpression improved CAR-T cell persistence in vivo. Tumor-infiltrating Run-CAR-T cells showed less cell death with enhanced proliferative and effector activities. Consistently, in vitro studies indicated that AICD was also decreased in Run-CAR-T cells via downregulation of tumor necrosis factor (TNF) secretion. Further studies revealed that Runx3 could bind to the TNF promoter and suppress its gene transcription after T cell activation. In conclusion, Runx3-armored CAR-T cells showed increased antitumor activities and could be a new modality for the treatment of solid tumors.


Assuntos
Neoplasias , Linfócitos T , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Citocinas/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 16(4): 717-728, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27903750

RESUMO

Although proteasome inhibitors such as bortezomib had significant therapeutic effects in multiple myeloma and mantel cell lymphoma, they exhibited minimal clinical activity as a monotherapy for solid tumors, including colorectal cancer. We found in this study that proteasome inhibition induced a remarkable nuclear exportation of ubiquitinated proteins. Inhibition of CRM1, the nuclear export carrier protein, hampered protein export and synergistically enhanced the cytotoxic action of bortezomib on colon cancer cells containing wild-type p53, which underwent G2-M cell-cycle block and apoptosis. Further analysis indicated that tumor suppressor p53 was one of the proteins exported from nuclei upon proteasome inhibition, and in the presence of CRM1 inhibitor KPT330, nuclear p53, and expression of its target genes were increased markedly. Moreover, knockdown of p53 significantly reduced the synergistic cytotoxic action of bortezomib and KPT330 on p53+/+ HCT116 cells. In mice, KPT330 markedly augmented the antitumor action of bortezomib against HCT116 xenografts as well as patient-derived xenografts that harbored functional p53. These results indicate that nuclear p53 is a major mediator in the synergistic antitumor effect of bortezomib and KPT330, and provides a rationale for the use of proteasome inhibitor together with nuclear export blocker in the treatment of colorectal cancer. It is conceivable that targeting nuclear exportation may serve as a novel strategy to overcome resistance and raise chemotherapeutic efficacy, especially for the drugs that activate the p53 system. Mol Cancer Ther; 16(4); 717-28. ©2016 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Núcleo Celular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Células HCT116 , Células HeLa , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/farmacologia , Camundongos , Inibidores de Proteassoma/farmacologia , Triazóis/administração & dosagem , Triazóis/farmacologia , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA