Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(19-20): 1356-1367, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503990

RESUMO

Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Reparo do DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Recombinação Homóloga/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
2.
Biol Proced Online ; 26(1): 9, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594619

RESUMO

BACKGROUND: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson's disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. RESULTS: The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. CONCLUSIONS: NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance.

3.
Opt Express ; 31(20): 33241-33252, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859108

RESUMO

We proposed an optical fiber salinity sensor with a composite Fabry-Perot (F-P) cavity structure for simultaneous measurement of temperature and salinity based on microelectromechanical system (MEMS) technology. The sensor contains two sensing cavities. The silicon cavity is used for temperature sensing, and the seawater cavity processed by the glass microstructure is sensitive to the refractive index of seawater for salinity sensing. At the same time, the influence of the salinity-temperature cross-sensitivity error of the seawater cavity is effectively compensated by using the temperature single parameter sensitivity characteristics of the silicon cavity. The structural design of the sensor seawater cavity includes a cross-shaped groove and a cylindrical fluid cavity. The surface hydrophilicity treatment was performed on the interior of the cavity to solve the effect of no water injection in the cavity caused by the miniaturization of the sensor. The optical path difference (OPD) demodulation method is used to demodulate the two F-P cavities with large dynamic range and high resolution. In the range of 5∼40°C and 5∼ 40 ‰, the temperature and salinity sensitivity of the sensor can reach 110.25 nm/°C and 178.75 nm/‰, respectively, and the resolution can reach 5.02 × 10-3°C and 0.0138‰. It has the advantages of mass production, high stability, and small size, which give it great potential for marine applications.

4.
Cancer Cell Int ; 23(1): 323, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102641

RESUMO

BACKGROUND: Breast cancer is the leading cause of cancer death for women worldwide. Most of the breast cancer death are due to disease recurrence and metastasis. Increasingly accumulating evidence indicates that mitochondria play key roles in cancer progression and metastasis. Our recent study revealed that transmembrane protein PRRG4 promotes the metastasis of breast cancer. However, it is not clear whether PRRG4 can affect the migration and invasion of breast cancer cells through regulating mitochondria function. METHODS: RNA-seq analyses were performed on breast cancer cells expressing control and PRRG4 shRNAs. Quantitative PCR analysis and measurements of mitochondrial ATP content and oxygen consumption were carried out to explore the roles of PRRG4 in regulating mitochondrial function. Luciferase reporter plasmids containing different lengths of promoter fragments were constructed. Luciferase activities in breast cancer cells transiently transfected with these reporter plasmids were analyzed to examine the effects of PRRG4 overexpression on promoter activity. Transwell assays were performed to determine the effects of PRRG4-regulated pathway on migratory behaviors of breast cancer cells. RESULTS: Analysis of the RNA-seq data revealed that PRRG4 knockdown decreased the transcript levels of all the mitochondrial protein-encoding genes. Subsequently, studies with PRRG4 knockdown and overexpression showed that PRRG4 expression increased mitochondrial DNA (mtDNA) content. Mechanistically, PRRG4 via Src activated STAT3 in breast cancer cells. Activated STAT3 in turn promoted the transcription of mtDNA polymerase POLG through a STAT3 DNA binding site present in the POLG promoter region, and increased mtDNA content as well as mitochondrial ATP production and oxygen consumption. In addition, PRRG4-mediated activation of STAT3 also enhanced filopodia formation, migration, and invasion of breast cancer cells. Moreover, PRRG4 elevated migratory behaviors and mitochondrial function of breast cancer cells through POLG. CONCLUSION: Our results indicate that PRRG4 via the Src-STAT3-POLG axis enhances mitochondrial function and promotes migratory behaviors of breast cancer cells.

5.
J Chem Inf Model ; 63(3): 782-793, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36652718

RESUMO

The interpretability is an important issue for end-to-end learning models. Motivated by computer vision algorithms, an interpretable noncovalent interaction (NCI) correction multimodal (TFRegNCI) is proposed for NCI prediction. TFRegNCI is based on RegNet feature extraction and a transformer encoder fusion strategy. RegNet is a network design paradigm that mainly focuses on local features. Meanwhile, the Vision Transformer is also leveraged for feature extraction, because it can capture global features better than RegNet while lowering the computational cost. Using a transformer encoder as the fusion strategy rather than multilayer perceptron can enhance model performance, due to its emphasis on important features with less parameters. Therefore, the proposed TFRegNCI achieved high accurate prediction (mean absolute error of ∼0.1 kcal/mol) comparing with the coupled cluster single double (triple) (CCSD(T)) benchmark. To further improve the model efficiency, TFRegNCI applies two-dimensional (2D) inputs transformed from three-dimensional (3D) electron density cubes, which saves time (30%), while the model accuracy remains. To improve model interpretability, a visualization module, Gradient-weighted Regression Activation Mapping (Grad-RAM) has been embedded. Grad-RAM is promoted from the classification algorithm, Gradient-weighted Class Activation Mapping, to perform feature visualization for the regression task. With Grad-RAM, the visual location map for features in deep learning models can be displayed. The feature map visualizations suggest that the 2D model has the similar performance as the 3D model, because of equally effective feature extractions from electron density. Moreover, the valid feature region on the location map by the 3D model is consistent with the NCIPLOT NCI isosurface. It is confirmed that the model does extract significant features related to the NCI interaction. The interpretable analyses are carried out through molecular orbital contribution on effective features. Thereby, the proposed model is likely to be a promising tool to reveal some essential information on NCIs, with regard to the level of electronic theory.


Assuntos
Algoritmos , Benchmarking , Fontes de Energia Elétrica , Eletrônica , Redes Neurais de Computação
6.
Neuropediatrics ; 54(6): 381-387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37100402

RESUMO

BACKGROUND: Different types of electrical stimulation (ES) showed diverse effects on children with cerebral palsy (CP). Previous studies reported inconsistent results for effects of ES on children with CP. The present study aimed to conduct a meta-analysis to summarize these diverse results. METHODS: We searched for studies exploring effects of ES on children with CP in databases (PubMed and Web of Science) from their inception until December 2022. Standard mean differences (SMDs) and 95% confidence intervals (CIs) were computed using STATA 12.0 software. RESULTS: The meta-analysis included 19 randomized controlled trials (including 265 CP patients in test group and 263 CP patients in corresponding control group). The study showed an increased improvement in gross motor function, walking speed, step length, and daily living activities in ES group compared with corresponding control group with random effects models (gross motor function: SMD = 2.04, 95% CI = 1.43-2.65; walking speed: SMD = 3.71, 95% CI = 1.49-5.92; step length: SMD = 1.89, 95% CI = 0.65-3.13; daily living activities: SMD = 5.18, 95% CI = 3.04-7.31), whereas the study showed no significant difference in change of muscle strength between ES group and the corresponding control group with a random effects model (SMD = 0.42, 95% CI = -0.12 to 0.97). CONCLUSION: The study demonstrated that ES might be used as therapy to improve gross motor function, gait, and daily living activities in children with CP.


Assuntos
Paralisia Cerebral , Humanos , Criança , Paralisia Cerebral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Atividades Cotidianas , Marcha , Velocidade de Caminhada
7.
Proc Natl Acad Sci U S A ; 117(7): 3621-3626, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024762

RESUMO

Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.


Assuntos
Reprogramação Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Dioxigenases/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Domínio Catalítico , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
8.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571517

RESUMO

Energy-efficient and reliable underwater acoustic communication attracts a lot of research due to special marine communication conditions with limited resources in underwater acoustic sensor networks (UASNs). In their final analysis, the existing studies focus on controlling redundant communication and route void that greatly influence UASNs' comprehensive performances. Most of them consider directional or omnidirectional transmission for partial optimization aspects, which still have many extra data loads and performance losses. This paper analyzes the main issue sources causing redundant communication in UASNs, and proposes a lightweight differentiated transmission to suppress extra communication to the greatest extent as well as balance energy consumption. First, the layered model employs layer ID to limit the scale of the data packet header, which does not need depth or location information. Second, the layered model, fuzzy-based model, random modeling and directional-omnidirectional differentiated transmission mode comb out the forwarders step by step to decrease needless duplicated forwarding. Third, forwarders are decided by local computation in nodes, which avoids exchanging controlling information among nodes. Simulation results show that our method can efficiently reduce the network load and improve the performance in terms of energy consumption balance, network lifetime, data conflict and network congestion, and data packet delivery ratio.

9.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513205

RESUMO

The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. In this report, we explored a novel strategy to design new structure fragments based on lithocholic acid (LCA) with improved hydrophilicity by introducing a polar "oxygen atom" into the side chain of LCA, then (i) either retaining the carboxylic acid group or replacing the carboxylic acid group with (ii) a diol group or (iii) a vinyl group. These novel fragments were evaluated using luciferase-based reporter assays and the MTS assay. Compared to LCA, the result revealed that the two lead compounds 1a-1b were well tolerated in vitro, maintaining similar potency and efficacy to LCA. The MTS assay results indicated that cell viability was not affected by dose dependence (under 25 µM). Additionally, computational model analysis demonstrated that compounds 1a-1b formed more extensive hydrogen bond networks with Takeda G protein-coupled receptor 5 (TGR5) than LCA. This strategy displayed a potential approach to explore the development of novel endogenous bile acids fragments. Further evaluation on the biological activities of the two lead compounds is ongoing.


Assuntos
Ácidos e Sais Biliares , Ácido Litocólico , Ácido Litocólico/farmacologia , Ácidos e Sais Biliares/farmacologia
10.
Mol Med ; 28(1): 29, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255803

RESUMO

PURPOSE: Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction. METHOD: Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement. RESULTS: NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. CONCLUSION: Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina , Animais , Dependovirus , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Doenças Neurodegenerativas/terapia , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
J Comput Chem ; 43(4): 244-254, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34786734

RESUMO

High-dimensional potential energy surface (PES) for van der Waals systems with spectroscopic accuracy, is of great importance for quantum dynamics and an extremely challenge job. CO-N2 is a typical van der Waals system and its high-precision PES may help elucidate weak interaction mechanisms. Taking CO-N2 potential energies calculated by CCSD(T)-F12b/aug-cc-pVQZ as the benchmark, we establish an accurate, robust, and efficient machine learning model by using only four molecular structure descriptors based on 7966 benchmark potential energies. The highest accuracy is obtained by a stacking ensemble DNN (SeDNN). Its evaluation parameters MAE, RMSE, and R2 reach 0.096, 0.163, 0.9999 cm-1 , respectively, and the spectroscopic accuracy for vibration spectrum is achieved with predicted PES, which shows SeDNN superior goodness-of-fit and prediction performance. An elaborated PES with the reported global minimum has been predicted with the model, which perfectly reproduces CCSD(T) potential energies and the analytical MLR PES [PCCP, 2018, 20, 2036]. The critical points (global minimum, TSI, TSII, and their barriers), potential curve, and entire PES profile are remarkably consistent with CCSD(T) calculations. To further improve the usability of constructing PESs in practice, the size of the training set (energy points) for the model is reduced to 50%, 30%, and 20% of the database, respectively. The results show that even training with the smallest training set (1593 points), the PES only differs 2.555 cm-1 with the analytic MLR PES. Therefore, the proposed SeDNN is promisingly an alternative efficient tool to construct subtle PES for van der Waals systems.

12.
Cancer Cell Int ; 22(1): 417, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572921

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive malignancies without effective targeted therapies. MUC1 has emerged as a potential common target for cancer therapy because it is overexpressed in a variety of different cancers including the majority of pancreatic cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1 have been reported. Recently, we generated a humanized MUC1 antibody (HzMUC1) specific to the interaction region between MUC1-N and MUC1-C. In this study, we generated the antibody drug conjugate (ADC) by conjugating HzMUC1 with monomethyl auristatin (MMAE), and examined the efficacy of HzMUC1-MMAE against the MUC1-positive pancreatic cancer in vitro and in vivo. METHODS: Western blot and immunoprecipitation were used to detect MUC1 in pancreatic cancer cells. MUC1 localization in pancreatic cancer cells was determined by confocal microscopy. HzMUC1 was conjugated with the monomethyl auristatin (MMAE), generating the HzMUC1-MMAE ADC. Colony formation assay and flow cytometry were used to assess the effects of the HzMUC1-MMAE cell viability, cell cycle progression and apoptosis. Capan-2 and CFPAC-1 xenograft model were used to test the efficacy of HzMUC1-MMAE against pancreatic cancer. RESULTS: HzMUC1 antibody binds to MUC1 on the cell surface of pancreatic cancer cells. HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in pancreatic cancer cells. Importantly, HzMUC1-MMAE significantly reduced the growth of pancreatic xenograft tumors by inhibiting cell proliferation and enhancing cell death. CONCLUSION: Our results indicate that HzMUC1-ADC is a promising novel targeted therapy for pancreatic cancer. HzMUC1-ADC should also be an effective drug for the treatment of different MUC1-positive cancers.

13.
Hematol Oncol ; 40(3): 356-369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35482553

RESUMO

Concurrent translocations of MYC and BCL2 lead to abnormal expression of both oncoproteins, which contribute to the aggressive clinical characteristics of double-hit lymphoma (DHL). An effective therapy for DHL remains an unmet clinical need. In this study, we showed that both Ca2+ /calmodulin-dependent protein kinase II δ (CAMKIIδ) and γ (CAMKIIγ) were highly expressed in DHL. Both isoforms of CAMKII stabilize c-Myc protein by phosphorylating it at Ser62, increase BCL2 expression, and promote DHL tumor growth. Inhibition of CAMKIIδ and CAMKIIγ by either berbamine (BBM) or one of its derivatives (PA4) led to the down regulation of c-Myc and BCL2 proteins. BBM/PA4 also exhibited anti-tumor efficacy in DHL cell lines and NSG xenograft models. Altogether, CAMKIIδ and CAMKIIγ appear to be critical for DHL tumor development and are promising therapeutic targets for DHL.


Assuntos
Linfoma de Células B , Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-myc , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Rearranjo Gênico , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
14.
Exp Cell Res ; 407(1): 112787, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450119

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and its more advanced stages, Non-alcoholic steatohepatitis and Cirrhosis, are the most common liver diseases in the worldwide, especially in developing countries. NAFLD is distinguished by the accumulation of triglycerides within hepatocytes. An increasing body of evidence suggests that hepatic MicroRNAs play an important role in NAFLD by controlling lipid metabolism, inflammation, and fibrosis. However, the precise causative functions of miRNA in NAFLD remain unknown. Here, we discovered that mice lacking MicroRNA-23b developed NAFLD-like phenotypes such as increased serum triglyceride and lipid droplet accumulation. In db/db mice fed a high fat diet, MicroRNA-23b overexpression reduced liver weight and alleviated liver inflammation, apoptosis, and fibrosis. MicroRNA-23b regulates the acyl-CoA metabolic process via Acyl-CoA thioesterase 4 (Acot4), which interacts with Acetyl CoA Carboxylase (ACC), according to the RNA-seq analysis.


Assuntos
Coenzima A/metabolismo , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Triglicerídeos/metabolismo , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
15.
Mol Cell ; 54(6): 1012-1021, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24837675

RESUMO

Chromosomal rearrangements often occur at genomic loci with DNA secondary structures, such as common fragile sites (CFSs) and palindromic repeats. We developed assays in mammalian cells that revealed CFS-derived AT-rich sequences and inverted Alu repeats (Alu-IRs) are mitotic recombination hotspots, requiring the repair functions of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) and the Mre11/Rad50/Nbs1 complex (MRN). We also identified an endonuclease activity of CtIP that is dispensable for end resection and homologous recombination (HR) at I-SceI-generated "clean" double-strand breaks (DSBs) but is required for repair of DSBs occurring at CFS-derived AT-rich sequences. In addition, CtIP nuclease-defective mutants are impaired in Alu-IRs-induced mitotic recombination. These studies suggest that an end resection-independent CtIP function is important for processing DSB ends with secondary structures to promote HR. Furthermore, our studies uncover an important role of MRN, CtIP, and their associated nuclease activities in protecting CFSs in mammalian cells.


Assuntos
Proteínas de Transporte/metabolismo , Sítios Frágeis do Cromossomo/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Sequências Repetidas Invertidas/genética , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Elementos Alu/genética , Composição de Bases/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases , Endonucleases/genética , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11 , Mitose/genética , Proteínas Nucleares/genética , Recombinação Genética
16.
Biosci Biotechnol Biochem ; 86(4): 455-463, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044455

RESUMO

F-box protein 17 (FBXO17) is associated with high-grade glioma and acted as a promotor of glioma development. This study investigated the effect and underlying pathway of FBXO17 on glioma. The Cancer Genome Atlas database was applied to analyze FBXO17 expression information in glioma. First, high FBXO17 expressions are associated with glioma and poor prognosis. Then, FBXO17 was upregulated in glioma cells. Meanwhile, knock-down of FBXO17 inhibited cell proliferation, migration, and invasion, but increased the cell apoptosis. Besides, knock-down of FBXO17 inhibited mitochondrial membrane potential and increased reactive oxygen species. Furthermore, knock-down of FBXO17 decreased level of adenosine triphosphate, glucose, lactate, GLUT1, HK2, PFKP, PKM2, and LDHA. In conclusion, FBXO17 was high expression in glioma, and FBXO17 regulates glioma by regulating glycolysis pathway, providing novel theoretical for the treatment of glioma.


Assuntos
Proteínas F-Box , Glioma , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glicólise , Humanos
17.
J Am Soc Nephrol ; 32(10): 2561-2578, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34479967

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common primary GN worldwide. Circulating immune complexes form that are prone to deposition in the mesangium, where they trigger glomerular inflammation. A growing body of evidence suggests that dysregulated expression of microRNAs in IgAN may play a significant role in establishing the disease phenotype. METHODS: We generated single miR-23b-3p(miR-23b) knockout mice using CRISPR-Cas9. RESULTS: In humans, miR-23b levels are downregulated in kidney biopsies and sera of patients with IgAN, and serum miR-23b levels are negatively correlated with serum IgA1 levels. We show that miR-23b-/- mice develop an IgAN-like phenotype of mesangial IgA and C3 deposition associated with development of albuminuria, hypertension, an elevated serum creatinine, and dysregulated mucosal IgA synthesis. Dysregulation of IgA production is likely mediated by the loss of miR-23b-mediated suppression of activation-induced cytidine deaminase in mucosal B cells. In addition, we show that loss of miR-23b increases the susceptibility of the kidney to progressive fibrosis through loss of regulation of expression of gremlin 2 and IgA accumulation through downregulation of the transferrin receptor. CONCLUSIONS: Our findings suggest an indispensable role for miR-23b in kidney disease, and in particular, IgAN. miR-23b may in the future offer a novel therapeutic target for the treatment of IgAN.


Assuntos
Glomerulonefrite por IGA/genética , Imunoglobulina A/biossíntese , Mucosa Intestinal/metabolismo , MicroRNAs/genética , Animais , Linfócitos B/enzimologia , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Complemento C3/metabolismo , Citidina Desaminase/metabolismo , Citocinas/genética , Regulação para Baixo , Ativação Enzimática , Feminino , Fibrose , Mesângio Glomerular/patologia , Glomerulonefrite por IGA/patologia , Humanos , Hipertensão/genética , Imunoglobulina A/sangue , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Fenótipo , Receptores da Transferrina/genética , Transdução de Sinais/genética
18.
J Cell Mol Med ; 25(16): 7922-7934, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197043

RESUMO

IgA nephropathy (IgAN), the most common form of primary glomerulonephritis, is caused by immune system dysfunction and affects only the kidneys. miRNA was involved in IgAN, in which their roles are still unknown. Herein, we found increased glomerular medulla size, proteinuria, kidney artery resistance, kidney fibrosis and immune complex deposition in 5-month miR-25/93/106b cluster knockout (miR-TKO) mice. In vitro, the inhibition of miR-25 cluster could promote cell proliferation and increase fibrosis-related protein and transferrin receptor (TFRC) expression in human renal glomerular mesangial cell (HRMC). Luciferase assay revealed that inhibition of miR-93/106b cluster could upregulate Ccnd1 expression through direct binding with the 3'UTR of Ccnd1. Conversely, inhibition of Ccnd1 expression prevented miR-93/106b-induced effect in HRMC. These findings suggested that miR-25 cluster played an important role in the progression of IgAN, which provided new insights into the pathogenesis and treatment of IgAN.


Assuntos
Fibrose/patologia , Glomerulonefrite por IGA/patologia , Nefropatias/patologia , Células Mesangiais/metabolismo , MicroRNAs/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Células Cultivadas , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/metabolismo , Humanos , Nefropatias/genética , Nefropatias/imunologia , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética
19.
J Biol Chem ; 295(40): 13838-13849, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32753484

RESUMO

The ADP-ribosylhydrolase ARH3 plays a key role in DNA damage repair, digesting poly(ADP-ribose) and removing ADP-ribose from serine residues of the substrates. Specific inhibitors that selectively target ARH3 would be a useful tool to examine DNA damage repair, as well as a possible strategy for tumor suppression. However, efforts to date have not identified any suitable compounds. Here, we used in silico and biochemistry screening to search for ARH3 inhibitors. We discovered a small molecule compound named ARH3 inhibitor 26 (AI26) as, to our knowledge, the first ARH3 inhibitor. AI26 binds to the catalytic pocket of ARH3 and inhibits the enzymatic activity of ARH3 with an estimated IC50 of ∼2.41 µm in vitro Moreover, hydrolysis of DNA damage-induced ADP-ribosylation was clearly inhibited when cells were pretreated with AI26, leading to defects in DNA damage repair. In addition, tumor cells with DNA damage repair defects were hypersensitive to AI26 treatment, as well as combinations of AI26 and other DNA-damaging agents such as camptothecin and doxorubicin. Collectively, these results reveal not only a chemical probe to study ARH3-mediated DNA damage repair but also a chemotherapeutic strategy for tumor suppression.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Glicosídeo Hidrolases/genética , Humanos
20.
Bioorg Med Chem ; 41: 116193, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022528

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a severe liver disease causing serious liver complications, including nonalcoholic steatohepatitis (NASH). Nuclear receptor PPARα (peroxisome proliferator-activated receptor α) has drawn special attention recently as a potential developmental drug target to treat type-2 diabetes and related diseases due to its unique functions in regulating lipid metabolism, promoting triglyceride oxidation, and suppressing hepatic inflammation, raising interest in PPARα agonists as potential therapies for NAFLD. However, how PPARα coordinates potential treatment of NAFLD and NASH between various metabolic pathways is still obscure. Here, we show that the DY series of novel selective PPARα modulators activate PPARα by up-regulating PPARα target genes directly involved in NAFLD and NASH. The design, synthesis, docking studies, and in vitro and in vivo evaluation of the novel DY series of PPARα agonists are described.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/agonistas , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA