Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567723

RESUMO

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Assuntos
Bacillus subtilis , Sistemas CRISPR-Cas , Escherichia coli , Edição de Genes , Mutagênese , Aminoidrolases , Bacillus subtilis/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/genética , Edição de Genes/métodos , Mutação , Plasmídeos/genética
2.
Nat Chem Biol ; 19(12): 1504-1512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37443393

RESUMO

Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.


Assuntos
DNA Polimerase Dirigida por DNA , Saccharomyces cerevisiae , DNA Bacteriano , DNA Polimerase Dirigida por DNA/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Replicação do DNA , Bactérias/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
3.
Nat Chem Biol ; 19(3): 367-377, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646959

RESUMO

The production efficiency of microbial cell factories is sometimes limited by the lack of effective methods to regulate multiple targets in a coordinated manner. Here taking the biosynthesis of glucosamine-6-phosphate (GlcN6P) in Bacillus subtilis as an example, a 'design-build-test-learn' framework was proposed to achieve efficient multiplexed optimization of metabolic pathways. A platform strain was built to carry biosensor signal-amplifying circuits and two genetic regulation circuits. Then, a synthetic CRISPR RNA array blend for boosting and leading (ScrABBLE) device was integrated into the platform strain, which generated 5,184 combinatorial assemblies targeting three genes. The best GlcN6P producer was screened and engineered for the synthesis of valuable pharmaceuticals N-acetylglucosamine and N-acetylmannosamine. The N-acetylglucosamine titer reached 183.9 g liter-1 in a 15-liter bioreactor. In addition, the potential generic application of the ScrABBLE device was also verified using three fluorescent proteins as a case study.


Assuntos
Acetilglucosamina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Acetilglucosamina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Redes e Vias Metabólicas , RNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Engenharia Metabólica/métodos
4.
Metab Eng ; 84: 59-68, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38839038

RESUMO

The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying Pichia pastoris P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the HEM2 gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.

5.
Crit Rev Biotechnol ; : 1-17, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228501

RESUMO

Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.

6.
Nucleic Acids Res ; 50(11): 6587-6600, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35670665

RESUMO

Dynamic regulation is an effective strategy for control of gene expression in microbial cell factories. In some pathway contexts, several metabolic modules must be controlled in a time dependent or ordered manner to maximize production, while the creation of genetic circuits with ordered regulation capacity still remains a great challenge. In this work, we develop a pathway independent and programmable system that enables multi-modular ordered control of metabolism in Bacillus subtilis. First, a series of thermosensors were created and engineered to expand their thresholds. Then we designed single-input-multi-output circuits for ordered control based on the use of thermosensors with different transition points. Meanwhile, a repression circuit was constructed by combining CRISPRi-based NOT gates. As a proof-of-concept, these genetic circuits were applied for multi-modular ordered control of 2'-fucosyllactose (2'-FL) biosynthesis, resulting in a production of 1839.7 mg/l in shake flask, which is 5.16-times that of the parental strain. In a 5-l bioreactor, the 2'-FL titer reached 28.2 g/l with down-regulation of autolysis. Taken together, this work provides programmable and versatile thermosensitive genetic toolkits for dynamic regulation in B. subtilis and a multi-modular ordered control framework that can be used to improve metabolic modules in other chassis cells and for other compounds.


Assuntos
Bacillus subtilis , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Metabólica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Redes Reguladoras de Genes , Engenharia Metabólica/métodos , Temperatura , Trissacarídeos/biossíntese
7.
Biotechnol Lett ; 46(4): 545-558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717663

RESUMO

To enhance the import of heme for the production of active hemoproteins in Escherichia coli C41 (DE3) lacking the special heme import system, heme receptor ChuA from E. coli Nissle 1917 was modified through molecular docking and the other components (ChuTUV) for heme import was overexpressed, while heme import was tested through growth assay and heme sensor HS1 detection. A ChuA mutant G360K was selected, which could import 3.91 nM heme, compared with 2.92 nM of the wild-type ChuA. In addition, it presented that the expression of heme transporters ChuTUV was not necessary for heme import. Based on the modification of ChuA (G360K), the titer of human hemoglobin and the peroxidase activity of leghemoglobin reached 1.19 µg g-1 DCW and 24.16 103 U g-1 DCW, compared with 1.09 µg g-1 DCW and 21.56 103 U g-1 DCW of the wild-type ChuA, respectively. Heme import can be improved through the modification of heme receptor and the engineered strain with improved heme import has a potential to efficiently produce high-active hemoproteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Heme , Hemoglobinas , Escherichia coli/genética , Escherichia coli/metabolismo , Heme/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/genética , Humanos , Simulação de Acoplamento Molecular , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
8.
Cancer Sci ; 114(6): 2569-2583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880750

RESUMO

The clinical outcome of resectable non-small-cell lung cancer (NSCLC) patients receiving neoadjuvant chemoimmunotherapy is good but varies greatly. In addition, the pathological response after neoadjuvant chemoimmunotherapy is significantly associated with survival outcomes. The aim of this retrospective study was to identify which population of patients with locally advanced and oligometastatic NSCLC has a favorable pathological response after neoadjuvant chemoimmunotherapy. NSCLC patients treated with neoadjuvant chemoimmunotherapy were enrolled between February 2018 and April 2022. Data on clinicopathological features were collected and evaluated. Multiplex immunofluorescence was performed on pre-treatment puncture specimens and surgically resected specimens. In total, 29 patients with stages III and IV locally advanced or oligometastatic NSCLC who received neoadjuvant chemoimmunotherapy and R0 resection were enrolled. The results showed that 55% (16/29) of patients had a major pathological response (MPR) and 41% (12/29) of patients had a complete pathological response (pCR). In the stroma area of the pre-treatment specimen, the higher infiltration of CD3+ PD-L1+ tumor-infiltrating lymphocytes (TILs) and the lower infiltration of CD4+ and CD4+ FOXP3+ TILs were more likely to appear in patients with pCR. However, in the tumor area, the higher infiltration of CD8+ TILs was more likely to appear in patients with non-MPR. In the post-treatment specimen, we found increased infiltration of CD3+ CD8+ , CD8+ GZMB+ , and CD8+ CD69+ TILs and decreased infiltration of PD-1+ TILs both in the stroma and tumor areas. Neoadjuvant chemoimmunotherapy achieved an MPR rate of 55% and induced greater immune infiltration. In addition, we observed that the baseline TILs and their spatial distribution correlate to the pathological response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Terapia Neoadjuvante , Estudos Retrospectivos , Microambiente Tumoral , Linfócitos do Interstício Tumoral , Antígeno B7-H1
9.
BMC Microbiol ; 23(1): 117, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101148

RESUMO

BACKGROUND: Surfactin produced by microbial fermentation has attracted increasing attention because of its low toxicity and excellent antibacterial activity. However, its application is greatly limited by high production costs and low yield. Therefore, it is important to produce surfactin efficiently while reducing the cost. In this study, B. subtilis strain YPS-32 was used as a fermentative strain for the production of surfactin, and the medium and culture conditions for the fermentation of B. subtilis YPS-32 for surfactin production were optimized. RESULTS: First, Landy 1 medium was screened as the basal medium for surfactin production by B. subtilis strain YPS-32. Then, using single-factor optimization, the optimal carbon source for surfactin production by B. subtilis YPS-32 strain was determined to be molasses, nitrogen sources were glutamic acid and soybean meal, and inorganic salts were KCl, K2HPO4, MgSO4, and Fe2(SO4)3. Subsequently, using Plackett-Burman design, MgSO4, time (h) and temperature (°C) were identified as the main effect factors. Finally, Box-Behnken design were performed on the main effect factors to obtain optimal fermentation conditions: temperature of 42.9 °C, time of 42.8 h, MgSO4 = 0.4 g·L- 1. This modified Landy medium was predicted to be an optimal fermentation medium: molasses 20 g·L- 1, glutamic acid 15 g·L- 1, soybean meal 4.5 g·L- 1, KCl 0.375 g·L- 1, K2HPO4 0.5 g·L- 1, Fe2(SO4)3 1.725 mg·L- 1, MgSO4 0.4 g·L- 1. Using the modified Landy medium, the yield of surfactin reached 1.82 g·L- 1 at pH 5.0, 42.9 ℃, and 2% inoculum for 42.8 h, which was 2.27-fold higher than that of the Landy 1 medium in shake flask fermentation. Additionally, under these optimal process conditions, further fermentation was carried out at the 5 L fermenter level by foam reflux method, and at 42.8 h of fermentation, surfactin reached a maximum yield of 2.39 g·L- 1, which was 2.96-fold higher than that of the Landy 1 medium in 5 L fermenter. CONCLUSION: In this study, the fermentation process of surfactin production by B. subtilis YPS-32 was improved by using a combination of single-factor tests and response surface methodology for test optimization, which laid the foundation for its industrial development and application.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Fermentação , Meios de Cultura , Reatores Biológicos , Glycine max
10.
Crit Rev Biotechnol ; 43(2): 227-241, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35129020

RESUMO

Natural products, a chemically and structurally diverse class of molecules, possess a wide spectrum of biological activities, have been used therapeutically for millennia, and have provided many lead compounds for the development of synthetic drugs. Cytochrome P450 enzymes (P450s, CYP) are widespread in nature and are involved in the biosynthesis of many natural products. P450s are heme-containing enzymes that use molecular oxygen and the hydride donor NAD(P)H (coupled via enzymic redox partners) to catalyze the insertion of oxygen into C-H bonds in a regio- and stereo-selective manner, effecting hydroxylation and several other reactions. With the rapid development of systems biology, numerous novel P450s have been identified for the biosynthesis of natural products, but there are still several challenges to the efficient heterologous expression of active P450s. This review covers recent developments in P450 research and development, including the properties and functions of P450s, discovery and mining of novel P450s, modification and screening of P450 mutants, improved heterologous expression of P450s in microbial hosts, efficient whole-cell transformation with P450s, and current applications of P450s for the biosynthesis of natural products. This resource provides a solid foundation for the application of highly active and stable P450s in microbial cell factories to biosynthesize natural products.


Assuntos
Produtos Biológicos , Produtos Biológicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Catálise , Oxigênio
11.
Biotechnol Bioeng ; 120(6): 1623-1639, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36788025

RESUMO

Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.


Assuntos
Bacillus subtilis , Engenharia Metabólica , Bacillus subtilis/metabolismo
12.
Arch Microbiol ; 205(3): 91, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781487

RESUMO

A novel actinobacterium with antimicrobial activity, designated strain H16431T, was isolated from a sediment sample collected from Dianchi Lake, Yunnan Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain H16431T was most closely related to Nonomuraea rhizosphaerae CGMCC 4.7431T and Nonomuraea guangzhouensis CGMCC 4.7101T (98.1% similarity), but formed a monophyletic clade with Nonomuraea ceibae KCTC 39826T (98.0% similarity). Phylogenomic analysis based on whole-genome sequence showed that strain H16431T formed a separate clade within the genus Nonomuraea. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H16431T and its closely related Nonomuraea species were 80.0-81.5%, 71.2-74.6%, and 23.2-25.0%, respectively, which were significantly lower than the widely accepted species-defined threshold. The DNA G + C content was 70.2% based on the whole-genome sequence. The menaquinones were identified as MK-9(H4), MK-9(H6), and MK-9(H2). The major fatty acids were iso-C16:0, 10 methyl-C17:0, and iso-C16:0 2OH. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, and phosphatidylinositol. These chemotaxonomic characteristics were corresponded to those of the genus Nonomuraea. On the basis of the taxonomic evidence, strain H16431T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea sediminis sp. nov. is proposed. The type strain is H16431T (=JCM 34852T=CICC 25119T).


Assuntos
Actinomycetales , Anti-Infecciosos , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S/genética , Lagos , DNA Bacteriano/genética , China , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo , Ácido Diaminopimélico/química , Actinomycetales/genética , Fosfolipídeos/química , Ácidos Graxos/química , Vitamina K 2/química
13.
Microb Cell Fact ; 22(1): 180, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700284

RESUMO

BACKGROUND: Saccharomyces cerevisiae has been used in the biosynthesis of acid products such as organic acids owing to its acid tolerance. Improving the acid tolerance of S. cerevisiae is beneficial for expanding its application range. Our previous study isolated the TAMC strain that was tolerant to a pH 2.3 through adaptive laboratory evolution; however, its mechanism underlying tolerance to low pH environment remains unclear. RESULTS: In this study, through visual observation and order analysis of plasma membrane and membrane microdomains, we revealed that the membrane microdomains of TAMC strain play an indispensable role in acid tolerance. Transcriptomic analysis showed an increase in the expression of genes related to key components of membrane microdomains in TAMC strain. Furthermore, an obvious reduction was observed in the acid tolerance of the strain with sterol C-24 methyltransferase encoding gene ERG6 knockout for inhibiting membrane microdomain formation. Finally, colocalization analysis of H+-ATPase PMA1 and plasma membrane protein PMP1 showed that disruption of membrane microdomains could inhibit the formation of the H+-ATPase complex. CONCLUSIONS: Membrane microdomains could provide a platform for forming H+-ATPase complexes to facilitate intracellular H+ homeostasis, and thereby improve cell acid resistance. This study proposed a novel acid tolerance mechanism, providing a new direction for the rational engineering of acid-tolerant strains.


Assuntos
Perfilação da Expressão Gênica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Membrana Celular , Técnicas de Inativação de Genes , Microdomínios da Membrana
14.
Clin Exp Rheumatol ; 41(10): 1964-1969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36762736

RESUMO

OBJECTIVES: The purpose of this study is to analyse the clinical characteristics of Behçet's disease (BD) patients in China with or without cardiovascular system involvement, and to develop a risk model to identify factors related to cardiovascular involvement in BD. METHODS: This retrospective cohort study, using the information on BD in Shenzhen People's Hospital from January 2000 to December 2021, included 95 patients: BD patients without cardiovascular system involvement (n=63) and with cardiovascular system involvement (n=32). RESULTS: Patients with BD who were males and had a combination of hypertension and a longer duration of disease were more likely to have cardiovascular involvement (p < 0.05). Compared to patients without cardiovascular involvement, manifestations of genital ulcers are rarely observed in those with cardiovascular involvement (60.32% vs. 37.50%, p=0.035). The binary logistic regression analysis found that ascending aortic widening and a history of hypertension were independent risk factors for BD with cardiovascular system involvement (OR=1.277, 95% CI 1.09, 1.495, p=0.002; OR=11.578, 95% CI 1.308, 102.639, p=0.028). The established prediction model indicated that can help to predict the likelihood of cardiovascular involvement in a patient with BD. CONCLUSIONS: Cardiovascular involvement in BD is not at all rare, however, it is often underreported due to a lack of specificity. BD patients who are male, have a history of combined hypertension, and have a long duration of disease should be focused on the presence of combined cardiovascular system involvement, with particular attention to the patient's ascending aortic internal diameter.


Assuntos
Síndrome de Behçet , Hipertensão , Humanos , Masculino , Feminino , Síndrome de Behçet/complicações , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Aorta
15.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279904

RESUMO

Nutraceuticals are defined as food or food components with therapeutic capabilities that have few side effects and are regarded as a natural therapy for preventing the onset of several life-threatening illnesses. The use of microbial cell factories to produce nutraceuticals is considered to be sustainable and promising for meeting market demand. Among the diverse strategies for optimizing microbial cell factories, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system has emerged as a valuable tool for gene integration, deletion, activation, and downregulation. With the advent of multiplexed and precise CRISPR strategies, optimized microbial cell factories are revolutionizing the yield of nutraceuticals. This review focuses on the development of highly adaptable CRISPR strategies to optimize the production in microbial cell factories of some important nutraceuticals (belonging to the class of carotenoids, flavonoids, stilbenoids, polysaccharides, and nonprotein amino acids). Further, we highlighted current challenges related to the efficiency of CRISPR strategies and addressed potential future directions to fully harness CRISPR strategies to make nutraceutical synthesis in microbial cell factories an industrially favorable method.


Assuntos
Bioengenharia , Engenharia Metabólica , Biologia Sintética , Suplementos Nutricionais
16.
Appl Microbiol Biotechnol ; 107(9): 2897-2910, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000229

RESUMO

α-Arbutin has been widely used as a skin-whitening ingredient. Previously, we successfully produced α-arbutin via whole-cell biocatalysis and found that the conversion rate of sucrose to α-arbutin was low (~45%). To overcome this issue, herein, we knocked out the genes of enzymes related to the sucrose hydrolysis, including sacB, sacC, levB, and sacA. The sucrose consumption was reduced by 17.4% in 24 h, and the sucrose conversion rate was increased to 51.5%. Furthermore, we developed an inducible protein degradation system with Lon protease isolated from Mesoplasma florum (MfLon) and proteolytic tag to control the PfkA activity, so that more fructose-6-phosphate (F6P) can be converted into glucose-1-phosphate (Glc1P) for α-arbutin synthesis, which can reduce the addition of sucrose and increase the sucrose conversion efficiency. Finally, the pathway of F6P to Glc1P was enhanced by integrating another copy of glucose 6-phosphate isomerase (Pgi) and phosphoglucomutase (PgcA); a high α-arbutin titer (~120 g/L) was obtained. The sucrose conversion rate was increased to 60.4% (mol/mol). In this study, the substrate utilization rate was boosted due to the attenuation of its hydrolysis and the assistance of the intracellular enzymes that converted the side product back into the substrate for α-arbutin synthesis. This strategy provides a new idea for the whole-cell biocatalytic synthesis of other products using sucrose as substrate, especially valuable glycosides.Key points The genes of sucrose metabolic pathway were knocked out to reduce the sucrose consumption. The by-product fructose was reused to synthesize α-arbutin. The optimized whole-cell system improved sucrose conversion by 15.3%.


Assuntos
Arbutina , Sacarose , Biocatálise , Sacarose/metabolismo , Engenharia Metabólica , Glicosídeos
17.
Curr Microbiol ; 81(1): 7, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962701

RESUMO

A novel actinomycete strain, designated H11425T, was isolated from a sediment sample collected from Baihua Lake, Guizhou Province, PR China, and a polyphasic approach was employed to determine its taxonomic position. 16S rRNA gene sequence comparisons showed that strain H11425T is most closely related to Pseudonocardia sulfidoxydans JCM 10411T (97.9%) and Pseudonocardia kunmingensis JCM 32122T (97.8%). Both of phylogenetic analysis based on 16S rRNA gene sequence and phylogenomic analysis based on whole-genome sequence showed that strain H11425T formed a separate clade within the genus Pseudonocardia. The draft genome had a length of 8,059,576 bp with a G + C content of 74.5%. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H11425T and its closely related Pseudonocardia species were 76.8-79.0%, 64.8-69.9% and 21.7-23.3%, respectively, which were significantly lower than the widely accepted species-defined threshold. Strain H11425T contained meso-diaminopimelic acid, arabinose, galactose, glucose and ribose in its whole-cell hydrolysates. Mycolic acids were absent. The menaquinone was identifed as MK-8(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine, an unknown phospholipid and four unidentified aminophospholipids. The major fatty acids were iso-C16:0, iso-C14:0, iso H-C16:1 and iso-C16:0 2OH. On the basis of the taxonomic evidence, strain H11425T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia lacus sp. nov. is proposed. The type strain is H11425T (= JCM 34851T = CICC 25118T).


Assuntos
Actinobacteria , Actinomycetales , Actinobacteria/genética , Pseudonocardia , Fosfatidiletanolaminas , Lagos , Filogenia , RNA Ribossômico 16S/genética , Fosfolipídeos , DNA
18.
Eur Arch Otorhinolaryngol ; 280(2): 511-517, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239785

RESUMO

INTRODUCTION: In the industrialized world, the incidence of Allergic rhinitis (AR), often known as hay fever, and other allergic disorders continues to grow. Recent studies have suggested environmental variables such as bacterial exposures as a potential reason for the rising prevalence of AR. With breakthroughs in our abilities to research the complex crosstalk of bacteria, the gut microbiomes' effect on human development, nutritional requirements, and immunologic disorders has become apparent METHODS: Three search engines, including Scopus, Medline, and PubMed, were searched for related published articles up to and including 1st July 2022. RESULTS: Several studies have investigated links between commensal microbiome alterations and the development of atopic diseases such as asthma and AR. Besides, studies using probiotics for treating AR suggest that they may alleviate symptoms and improve patient's quality of life. CONCLUSION: Research on probiotics and synbiotics for AR suggests they may improve symptoms, quality of life, and laboratory indicators. A better treatment strategy with advantages for patients may be achieved using probiotics, but only if more detailed in vitro and in vivo investigations are conducted with more participants.


Assuntos
Microbioma Gastrointestinal , Probióticos , Rinite Alérgica Sazonal , Rinite Alérgica , Humanos , Qualidade de Vida , Rinite Alérgica/terapia , Rinite Alérgica/diagnóstico , Probióticos/uso terapêutico
19.
Small ; 18(52): e2205252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344450

RESUMO

Nanodrugs are becoming increasingly important in the treatment of bacterial infection, but their low penetration ability to bacterial biofilm is still the main challenge hindering their therapeutic effect. Herein, nitric oxide (NO)-driven nanomotor based on L-arginine (L-Arg) and gold nanoparticles (AuNPs) loaded dendritic mesoporous silica nanoparticles (AG-DMSNs) is fabricated. AG-DMSNs have the characteristics of cascade catalytic reaction, where glucose is first catalyzed by the asymmetrically distributed AuNPs with their glucose oxidase (GOx)- mimic property, which results in unilateral production of hydrogen peroxide (H2 O2 ). Then, L-Arg is oxidized by the produced H2 O2 to release NO, leading to the self-propelled movement. It is found that the active movement of nanomotor promotes the AG-DMSNs ability to penetrate biofilm, thus achieving good biofilm clearance in vitro. More importantly, AG-DMSNs nanomotor can eliminate the biofilm of methicillin-resistant Staphylococcus aureus (MRSA) in vivo without causing damage to normal tissues. This nanomotor provides a new platform for the treatment of bacterial infections.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Humanos , Óxido Nítrico , Ouro/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
Metab Eng ; 70: 55-66, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033656

RESUMO

Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.


Assuntos
Bacillus subtilis , Engenharia Metabólica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Quitina/genética , Quitina/metabolismo , Quitosana , Engenharia Metabólica/métodos , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA