Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(6): 1436-1449.e20, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146163

RESUMO

Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/metabolismo , Proteínas Nucleares/genética , Sinapses/metabolismo , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese , Mutação de Sentido Incorreto , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
2.
Mol Cell ; 83(21): 3869-3884.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797622

RESUMO

Effective immunity requires the innate immune system to distinguish foreign nucleic acids from cellular ones. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA-editing enzyme ADAR1 to evade being recognized as viral dsRNA by cytoplasmic dsRNA sensors, including MDA5 and PKR. The loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. Additional RNA-editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, whereas loss of the cytoplasmic ADAR1p150 isoform or its dsRNA-binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150-/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5 or PKR alone. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.


Assuntos
Imunidade Inata , RNA de Cadeia Dupla , Animais , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Citoplasma/metabolismo , Imunidade Inata/genética , RNA de Cadeia Dupla/genética
3.
Genes Dev ; 36(15-16): 916-935, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175033

RESUMO

Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.


Assuntos
Células-Tronco Adultas , Isoformas de RNA , Regiões 3' não Traduzidas/genética , Células-Tronco Adultas/metabolismo , Animais , Masculino , Poliadenilação , Isoformas de Proteínas/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nature ; 608(7923): 569-577, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922514

RESUMO

A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.


Assuntos
Adenosina Desaminase , Predisposição Genética para Doença , Doenças do Sistema Imunitário , Inflamação , Edição de RNA , RNA de Cadeia Dupla , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Elementos Alu/genética , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Estudo de Associação Genômica Ampla , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Inosina/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/genética , Interferons/imunologia , Locos de Características Quantitativas/genética , Edição de RNA/genética , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/metabolismo
6.
RNA ; 30(5): 500-511, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531645

RESUMO

Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.


Assuntos
Adenosina Desaminase , Edição de RNA , Animais , Adenosina Desaminase/metabolismo , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Mamíferos/genética , RNA de Cadeia Dupla/genética , Humanos
7.
Nature ; 550(7675): 249-254, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022589

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.


Assuntos
Adenosina Desaminase , Primatas/genética , Edição de RNA/genética , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Músculos/metabolismo , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise Espaço-Temporal , Especificidade da Espécie , Transcriptoma/genética
8.
Nat Methods ; 15(7): 535-538, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29967493

RESUMO

Molecular tools that target RNA at specific sites allow recoding of RNA information and processing. SNAP-tagged deaminases guided by a chemically stabilized guide RNA can edit targeted adenosine to inosine in several endogenous transcripts simultaneously, with high efficiency (up to 90%), high potency, sufficient editing duration, and high precision. We used adenosine deaminases acting on RNA (ADARs) fused to SNAP-tag for the efficient and concurrent editing of two disease-relevant signaling transcripts, KRAS and STAT1. We also demonstrate improved performance compared with that of the recently described Cas13b-ADAR.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA/fisiologia , Proteínas SNARE/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Guanina/análogos & derivados , Humanos , Proteínas de Ligação a RNA , Proteínas SNARE/química
9.
Nucleic Acids Res ; 46(D1): D375-D379, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053264

RESUMO

Chemical mapping is a broadly utilized technique for probing the structure and function of RNAs. The volume of chemical mapping data continues to grow as more researchers routinely employ this information and as experimental methods increase in throughput and information content. To create a central location for these data, we established an RNA mapping database (RMDB) 5 years ago. The RMDB, which is available at http://rmdb.stanford.edu, now contains chemical mapping data for over 800 entries, involving 134 000 natural and engineered RNAs, in vitro and in cellulo. The entries include large data sets from multidimensional techniques that focus on RNA tertiary structure and co-transcriptional folding, resulting in over 15 million residues probed. The database interface has been redesigned and now offers interactive graphical browsing of structural, thermodynamic and kinetic data at single-nucleotide resolution. The front-end interface now uses the force-directed RNA applet for secondary structure visualization and other JavaScript-based views of bar graphs and annotations. A new interface also streamlines the process for depositing new chemical mapping data to the RMDB.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA/química , Conformação de Ácido Nucleico , Interface Usuário-Computador
10.
PLoS Genet ; 13(11): e1007064, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29182635

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification that affects the information encoded from DNA to RNA to protein. RNA editing can generate a multitude of transcript isoforms and can potentially be used to optimize protein function in response to varying conditions. In light of this and the fact that millions of editing sites have been identified in many different species, it is interesting to examine the extent to which these sites have evolved to be functionally important. In this review, we discuss results pertaining to the evolution of RNA editing, specifically in humans, cephalopods, and Drosophila. We focus on how comparative genomics approaches have aided in the identification of sites that are likely to be advantageous. The use of RNA editing as a mechanism to adapt to varying environmental conditions will also be reviewed.


Assuntos
Edição de RNA/genética , Edição de RNA/fisiologia , RNA/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Sequência de Bases/genética , Evolução Molecular , Genômica/métodos , Humanos , Inosina/genética , Inosina/metabolismo , RNA/metabolismo
11.
PLoS Genet ; 13(2): e1006563, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166241

RESUMO

Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.


Assuntos
Drosophila/genética , Evolução Molecular , Edição de RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regiões 3' não Traduzidas , Animais , Humanos , RNA não Traduzido/genética , Transcriptoma
12.
Dev Biol ; 426(2): 155-164, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157655

RESUMO

The Xenopus community has embraced recent advances in sequencing technology, resulting in the accumulation of numerous RNA-Seq and ChIP-Seq datasets. However, easily accessing and comparing datasets generated by multiple laboratories is challenging. Thus, we have created a central space to view, search and analyze data, providing essential information on gene expression changes and regulatory elements present in the genome. XenMine (www.xenmine.org) is a user-friendly website containing published genomic datasets from both Xenopus tropicalis and Xenopus laevis. We have established an analysis pipeline where all published datasets are uniformly processed with the latest genome releases. Information from these datasets can be extracted and compared using an array of pre-built or custom templates. With these search tools, users can easily extract sequences for all putative regulatory domains surrounding a gene of interest, identify the expression values of a gene of interest over developmental time, and analyze lists of genes for gene ontology terms and publications. Additionally, XenMine hosts an in-house genome browser that allows users to visualize all available ChIP-Seq data, extract specifically marked sequences, and aid in identifying important regulatory elements within the genome. Altogether, XenMine is an excellent tool for visualizing, accessing and querying analyzed datasets rapidly and efficiently.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Genoma , Genômica/métodos , Xenopus/genética , Animais , Sequência de Bases , Conjuntos de Dados como Assunto , Expressão Gênica , Ontologia Genética , Internet , RNA/biossíntese , RNA/genética , Sequências Reguladoras de Ácido Nucleico , Software
13.
Genome Res ; 25(7): 927-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953952

RESUMO

Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.


Assuntos
Impressão Genômica , Genômica , Adulto , Alelos , Análise por Conglomerados , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Feminino , Regulação da Expressão Gênica , Variação Genética , Genótipo , Humanos , Masculino , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores Sexuais
14.
J Biol Chem ; 291(12): 6158-68, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26817845

RESUMO

Adenosine deaminases acting on double-stranded RNA (ADARs) catalyze the deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA structures, a process known as A-to-I RNA editing. dsRNA is an important trigger of innate immune responses, including interferon (IFN) production and action. We examined the role of A-to-I RNA editing by two ADARs, ADAR1 and ADAR2, in the sensing of self-RNA in the absence of pathogen infection, leading to activation of IFN-induced, RNA-mediated responses in mouse embryo fibroblasts. IFN treatment of Adar1(-/-) cells lacking both the p110 constitutive and p150 IFN-inducible ADAR1 proteins induced formation of stress granules, whereas neither wild-type (WT) nor Adar2(-/-) cells displayed a comparable stress granule response following IFN treatment. Phosphorylation of protein synthesis initiation factor eIF2α at serine 51 was increased in IFN-treated Adar1(-/-) cells but not in either WT or Adar2(-/-) cells following IFN treatment. Analysis by deep sequencing of mouse exonic loci containing A-to-I-editing sites revealed that the majority of editing in mouse embryo fibroblasts was carried out by ADAR1. IFN treatment increased editing in both WT and Adar2(-/-) cells but not in either Adar1(-/-) or Adar1(-/-) (p150) cells or Stat1(-/-) or Stat2(-/-) cells. Hyper-edited sites found in predicted duplex structures showed strand bias of editing for some RNAs. These results implicate ADAR1 p150 as the major A-to-I editor in mouse embryo fibroblasts, acting as a feedback suppressor of innate immune responses otherwise triggered by self-RNAs possessing regions of double-stranded character.


Assuntos
Adenosina Desaminase/fisiologia , Imunidade Inata , Edição de RNA , RNA de Cadeia Dupla/metabolismo , Animais , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Desaminação , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/metabolismo , Tolerância Imunológica , Interferon-alfa/fisiologia , Camundongos Knockout , Fosforilação , Processamento de Proteína Pós-Traducional , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais
15.
Genome Res ; 24(3): 365-76, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24347612

RESUMO

RNA molecules transmit the information encoded in the genome and generally reflect its content. Adenosine-to-inosine (A-to-I) RNA editing by ADAR proteins converts a genomically encoded adenosine into inosine. It is known that most RNA editing in human takes place in the primate-specific Alu sequences, but the extent of this phenomenon and its effect on transcriptome diversity are not yet clear. Here, we analyzed large-scale RNA-seq data and detected ∼1.6 million editing sites. As detection sensitivity increases with sequencing coverage, we performed ultradeep sequencing of selected Alu sequences and showed that the scope of editing is much larger than anticipated. We found that virtually all adenosines within Alu repeats that form double-stranded RNA undergo A-to-I editing, although most sites exhibit editing at only low levels (<1%). Moreover, using high coverage sequencing, we observed editing of transcripts resulting from residual antisense expression, doubling the number of edited sites in the human genome. Based on bioinformatic analyses and deep targeted sequencing, we estimate that there are over 100 million human Alu RNA editing sites, located in the majority of human genes. These findings set the stage for exploring how this primate-specific massive diversification of the transcriptome is utilized.


Assuntos
Adenosina/genética , Elementos Alu , Inosina/metabolismo , Primatas/genética , Edição de RNA , Animais , Sequência de Bases , Regulação da Expressão Gênica , Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transcriptoma
16.
Nat Methods ; 11(1): 51-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270603

RESUMO

We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels and to accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq for studying allelic variations in the transcriptome.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , RNA/análise , Análise de Sequência de RNA/métodos , Alelos , Encéfalo/metabolismo , Encéfalo/patologia , Código de Barras de DNA Taxonômico , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Genótipo , Humanos , Edição de RNA , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de RNA/economia , Transcriptoma
17.
Methods ; 107: 42-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208508

RESUMO

A-to-I RNA editing is an essential gene regulatory mechanism. Once thought to be a rare phenomenon only occurring in a few transcripts, the emergence of high-throughput RNA sequencing has facilitated the identification of over 2 million RNA editing sites in the human transcriptome. In this review, we survey the current RNA-seq based methods as well as historical methods used to identify RNA editing sites.


Assuntos
Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Edição de RNA/genética , Transcriptoma/genética , Humanos , Análise de Sequência de RNA
18.
PLoS Genet ; 10(5): e1004304, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24786518

RESUMO

Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants.


Assuntos
Alelos , Proteínas/genética , Exoma , Humanos , Reação em Cadeia da Polimerase
19.
Am J Hum Genet ; 93(4): 641-51, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24075185

RESUMO

Identifying genomic variation is a crucial step for unraveling the relationship between genotype and phenotype and can yield important insights into human diseases. Prevailing methods rely on cost-intensive whole-genome sequencing (WGS) or whole-exome sequencing (WES) approaches while the identification of genomic variants from often existing RNA sequencing (RNA-seq) data remains a challenge because of the intrinsic complexity in the transcriptome. Here, we present a highly accurate approach termed SNPiR to identify SNPs in RNA-seq data. We applied SNPiR to RNA-seq data of samples for which WGS and WES data are also available and achieved high specificity and sensitivity. Of the SNPs called from the RNA-seq data, >98% were also identified by WGS or WES. Over 70% of all expressed coding variants were identified from RNA-seq, and comparable numbers of exonic variants were identified in RNA-seq and WES. Despite our method's limitation in detecting variants in expressed regions only, our results demonstrate that SNPiR outperforms current state-of-the-art approaches for variant detection from RNA-seq data and offers a cost-effective and reliable alternative for SNP discovery.


Assuntos
Exoma , Genoma Humano , Genômica/métodos , Polimorfismo de Nucleotídeo Único , RNA/genética , Análise de Sequência de RNA/métodos , Éxons , Humanos , Fases de Leitura Aberta , Sensibilidade e Especificidade
20.
Genome Res ; 23(1): 201-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960373

RESUMO

The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are transcribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms. Furthermore, we used Cufflinks to reconstruct transcripts from our RNA-seq data and found that ∼13.5% of the final contigs are derived from novel transcribed regions, both within introns and in intergenic regions. We then developed a filtering pipeline to separate protein-coding transcripts from noncoding RNAs and identified a confident set of 6686 noncoding transcripts in 3859 genomic loci. Since the current reference genome, XenTro3, consists of hundreds of scaffolds instead of full chromosomes, we also performed de novo reconstruction of the transcriptome using Trinity and uncovered hundreds of transcripts that are missing from the genome. Collectively, our data will not only aid in completing the assembly of the Xenopus tropicalis genome but will also serve as a valuable resource for gene discovery and for unraveling the fundamental mechanisms of vertebrate embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência de RNA , Transcriptoma , Xenopus/genética , Animais , Ectima Contagioso , Embrião não Mamífero/metabolismo , Íntrons , Larva/genética , Larva/metabolismo , Mapeamento Físico do Cromossomo , Splicing de RNA , RNA não Traduzido , Alinhamento de Sequência , Xenopus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA