Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925147

RESUMO

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

2.
Acc Chem Res ; 55(14): 1972-1984, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35796602

RESUMO

Photochemical reactions are of great importance in chemistry, biology, and materials science because they take advantage of a renewable energy source, mild reaction conditions, and high atom economy. Light absorption can excite molecules to a higher energy electronic state of the same spin multiplicity. The following nonadiabatic processes induce molecular transformations that afford exotic molecular architectures and high-energy-isomers that are inaccessible by thermal means. Computational simulations now complement time-resolved instrumentation to reveal ultrafast excited-state mechanistic information for photochemical reactions that is essential in disentangling elusive spectroscopic features, excited-state lifetimes, and excited-state mechanistic critical points. Nonadiabatic molecular dynamics (NAMD), powered by surface hopping techniques, is among the most widely applied techniques to model the photochemical reactions of medium-sized molecules. However, the computational efficiency is limited because of the requisite thousands of multiconfigurational quantum-chemical calculations multiplied by hundreds of trajectories. Machine learning (ML) has emerged as a revolutionary force in computational chemistry to predict the outcome of the resource-intensive multiconfigurational calculations on the fly. An ML potential trained with a substantial set of quantum-chemical calculations can predict the energies and forces with errors under chemical accuracy at a negligible cost. The integration of ML potentials in NAMD dramatically extends the maximum simulation time scale by ∼10 000-fold to the nanosecond regime.In this Account, we present a comprehensive demonstration of ML photodynamics simulations and summarize our most recent applications in resolving complex photochemical reactions. First, we address three fundamental components of ML techniques for photodynamics simulations: the quantum-chemical data set, the ML potential, and NAMD. Second, we describe best practices in building training data and our procedure toward training the ML photodynamics model with our recent literature contributions. We introduce a convenient training data generation scheme combining Wigner sampling and geometrical interpolation. It trains reliable and effective ML potentials suitable for subsequent active learning to detect undersampled data. We demonstrate how active learning automatically discovers new mechanistic pathways and reproduces experimental results. We point out that atomic permutation is an essential data augmentation approach to improve the learnability of distance-based molecular descriptors for highly symmetric molecules. Third, we demonstrate the utility of ML-photodynamics by showing the results of ML photodynamics simulations of (1) photo-torquoselective 4π disrotatory electrocyclic ring closing of norbornyl cyclohexadiene, which reveals a thermal conversion from experimentally unobserved intermediates to the reactant in 1 ns; (2) [2 + 2] photocycloaddition of substituted [3]-syn-ladderdienes in competition with 4π and 6π electrocyclic ring-opening reactions, uncovering substituent effects to explain the reported increased quantum yield of substituted cubane precursors; and (3) photochemical 4π disrotatory electrocyclic reactions of fluorobenzenes in nanoseconds with XMS-CASPT2-level training data. We expect this Account to broaden understanding of ML photodynamics and inspire future developments and applications to increasingly large molecules within complex environments on long time scales.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Isomerismo , Aprendizado de Máquina
3.
J Org Chem ; 88(9): 5311-5320, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022327

RESUMO

Storing solar energy is a vital component of using renewable energy sources to meet the growing demands of the global energy economy. Molecular solar thermal (MOST) energy storage is a promising means to store solar energy with on-demand energy release. The light-induced isomerization reaction of norbornadiene (NBD) to quadricyclane (QC) is of great interest because of the generally high energy storage density (0.97 MJ kg-1) and long thermal reversion lifetime (t1/2,300K = 8346 years). However, the mechanistic details of the ultrafast excited-state [2 + 2]-cycloaddition are largely unknown due to the limitations of experimental techniques in resolving accurate excited-state molecular structures. We now present a full computational study on the excited-state deactivation mechanism of NBD and its dimethyl dicyano derivative (DMDCNBD) in the gas phase. Our multiconfigurational calculations and nonadiabatic molecular dynamics simulations have enumerated the possible pathways with 557 S2 trajectories of NBD for 500 fs and 492 S1 trajectories of DMDCNBD for 800 fs. The simulations predicted the S2 and S1 lifetimes of NBD (62 and 221 fs, respectively) and the S1 lifetime of DMDCNBD (190 fs). The predicted quantum yields of QC and DCQC are 10 and 43%, respectively. Our simulations also show the mechanisms of forming other possible reaction products and their quantum yields.

4.
Angew Chem Int Ed Engl ; 62(35): e202308506, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37416970

RESUMO

The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.

5.
J Am Chem Soc ; 144(48): 22170-22177, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416791

RESUMO

Herein, we demonstrate the successful utilization of reticular chemistry as an excellent designing strategy for the deliberate construction of a zirconium-tetracarboxylate metal-organic framework (MOF) inspired by the Olympic rings. HIAM-4017, with an unprecedented (4,8)-c underlying net topology termed jcs, was developed via insightful reconstruction of the rings and judicious design of a nonsymmetric organic linker. HIAM-4017 exhibits high porosity and excellent chemical and thermal stability. Furthermore, excited-state intramolecular proton transfer (ESIPT) was achieved in an isoreticular MOF, HIAM-4018, with a large Stokes shift of 155 nm as a result of introducing the hydroxyl group to the linker skeleton to induce OH···N interactions. Such interactions were analyzed thoroughly by employing the time-dependent density functional theory (TD-DFT). Because of their good thermal and chemical stability, and strong luminescence, nanosized HIAM-4017 and HIAM-4018 were fabricated and used for Cr2O72- detection. Both MOFs demonstrate excellent sensitivity and selectivity. This work represents a neat example of building structure- and property-specific MOFs guided by reticular chemistry.


Assuntos
Estruturas Metalorgânicas , Teoria da Densidade Funcional , Zircônio , Luminescência , Porosidade
6.
Chemistry ; 28(38): e202200651, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474348

RESUMO

Benzene fluorination increases chemoselectivities for Dewar-benzenes via 4π-disrotatory electrocyclization. However, the origin of the chemo- and regioselectivities of fluorobenzenes remains unexplained because of the experimental limitations in resolving the excited-state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also currently cost-prohibitive. We now provide high-fidelity structural information and reaction outcome predictions with machine-learning-accelerated photodynamics simulations of a series of fluorobenzenes, C6 F6-n Hn , n=0-3, to study their S1 →S0 decay in 4 ns. We trained neural networks with XMS-CASPT2(6,7)/aug-cc-pVDZ calculations, which reproduced the S1 absorption features with mean absolute errors of 0.04 eV (<2 nm). The predicted nonradiative decay constants for C6 F4 H2 , C6 F6 , C6 F3 H3 , and C6 F5 H are 116, 60, 28, and 12 ps, respectively, in broad qualitative agreement with the experiments. Our calculations show that a pseudo Jahn-Teller distortion of fluorinated benzenes leads to an S1 local-minimum region that extends the excited-state lifetimes of fluorobenzenes. The pseudo Jahn-Teller distortions reduce when fluorination decreases. Our analysis of the S1 dynamics shows that the pseudo-Jahn-Teller distortions promote an excited-state cis-trans isomerization of a πC-C bond. We characterized the surface hopping points from our NAMD simulations and identified instantaneous nuclear momentum as a factor that promotes the electrocyclizations.


Assuntos
Fluorbenzenos , Simulação de Dinâmica Molecular , Aprendizado de Máquina
7.
J Am Chem Soc ; 143(48): 20166-20175, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34787403

RESUMO

Photochemical [2 + 2]-cycloadditions store solar energy in chemical bonds and efficiently access strained organic molecular architectures. Functionalized [3]-ladderdienes undergo [2 + 2]-photocycloadditions to afford cubanes, a class of strained organic molecules. The substituents (e.g., methyl, trifluoromethyl, and cyclopropyl) affect the overall reactivities of these cubane precursors; the yields range from 1 to 48%. However, the origin of these substituent effects on the reactivities and chemoselectivities is not understood. We now integrate single and multireference calculations and machine-learning-accelerated nonadiabatic molecular dynamics (ML-NAMD) to understand how substituents affect the ultrafast dynamics and mechanism of [2 + 2]-photocycloadditions. Steric clashes between substituent groups destabilize the 4π-electrocyclic ring-opening pathway and minimum energy conical intersections by 0.72-1.15 eV and reaction energies by 0.68-2.34 eV. Noncovalent dispersive interactions stabilize the [2 + 2]-photocycloaddition pathway; the conical intersection energies are lower by 0.31-0.85 eV, and the reaction energies are lower by 0.03-0.82 eV. The 2 ps ML-NAMD trajectories reveal that closed-shell repulsions block a 6π-conrotatory electrocyclic ring-opening pathway with increasing steric bulk. Thirty-eight percent of the methyl-substituted [3]-ladderdiene trajectories proceed through the 6π-conrotatory electrocyclic ring-opening, whereas the trifluoromethyl- and cyclopropyl-substituted [3]-ladderdienes prefer the [2 + 2]-photocycloaddition pathways. The predicted cubane yields (H: 0.4% < CH3: 1% < CF3: 14% < cPr: 15%) match the experimental trend; these substituents predistort the reactants to resemble the conical intersection geometries leading to cubanes.

8.
J Org Chem ; 86(5): 4061-4070, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543612

RESUMO

Photochemical reactions exemplify "green" chemistry and are an essential tool for synthesizing highly strained molecules under mild conditions with light. The light-promoted denitrogenation of bicyclic azoalkanes affords functionalized, stereoenriched bicyclo[1.1.0]butanes. These reactions were revisited with multireference calculations and non-adiabatic molecular dynamics (NAMD) simulations to provide a detailed analysis of the photophysics, reactivities, and unexplained stereoselectivity of a series of diazabicyclo[2.1.1]hexenes. We used complete active space self-consistent field (CASSCF) calculations with an (8,8) active space and ANO-S-VDZP basis set; the CASSCF energies were corrected with CASPT2 (8,8)/ANO-S-VDZP. The nature of the electronic excitation is n → π* and ranges from 3.77 to 3.91 eV for the diazabicyclo[2.1.1]hexenes reported here. Minimum energy path calculations showed stepwise C-N bond breaking and led directly to a minimum energy crossing point, corresponding to a stereochemical "double inversion" product. Wigner sampling of diazabicyclo[2.1.1]hexene provided initial conditions for 692 NAMD trajectories. We identified competing complete stereoselective and stereochemical scrambling pathways. The stereoselective pathways feature concerted bicyclobutane inversion and N2 extrusion. The stereochemical scrambling pathways involve N2 extrusion followed by bicyclobutane planarization, leading to stereochemical scrambling. The predicted diastereomeric excess (d.e.) almost exactly matches the experiment (calc.d.e. = 46% vs exp.d.e. = 47%). Our NAMD simulations with 672, 568, and 596 trajectories for 1-F, 1-Cl, and 1-Br predicted a d.e. of 94-97% for the double inversion products. Halogenation significantly perturbs the potential energy surface (PES) toward the retention products due to hyperconjugative interactions. The nC → σ*C-X, X = F, Cl, Br hyperconjugative effect leads to a broader shoulder region on the PES for double inversion.

9.
J Comput Chem ; 41(2): 88-96, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31495954

RESUMO

The comprehensive theoretical investigation of stability of functionalized corannulene cations [R-C20 H10 ]+ with respect to two alternative bond-breaking mechanisms, namely, homolytic or radical ([R-C20 H10 ]+ → R• + C20 H10 +• ) and heterolytic or cationic ([R-C20 H10 ]+ → R+ + C20 H10 ), was accomplished. The special focus was on the influence of the nature of R-group on the energetics of the bond cleavage. Detailed study of energetics of both mechanisms has revealed that the systems with small alkyl groups such as methyl tend to undergo bond breaking in accordance with homolytic mechanism. Subsequent elongation of the chain of the R-group resulted in shifting the paradigm, making heterolytic path more energetically favorable. Subsequent analysis of different components of the bonding between R-group and corannulene polyaromatic core helped to shed light on trends observed. In both mechanisms, the covalent contribution was found to be dominating, whereas ionic part contributes ~25-27%. Two leading components of ΔEorb , C20 H10 → R and R → C20 H10 , were identified with NOCV-EDA approach. While the homolytic pathway is best described as R → C20 H10 process, the heterolytic mechanism shows domination of the C20 H10 → R term. Surprisingly, the preparation energy (ΔEprep ) was identified as a key player in stability tendencies found. In other words, the relative stability of corresponding molecular fragments (here R-groups as the corannulene fragment remains the same for all systems) in their cationic or radical forms determine the preference given to a specific bond breaking path and, as consequence, the total stability of target functionalized cations. These conclusions were further confirmed by extending a set of R-groups to conjugated (allyl, phenyl), bulky (iPr, tBu), ß-silyl (CH2 SiH3 , CH2 SiMe3 ), and benzyl (CH2 Ph) groups. © 2019 Wiley Periodicals, Inc.

10.
J Phys Chem A ; 124(38): 7623-7632, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32866386

RESUMO

Sunlight is a renewable energy source that can be stored in chemical bonds using photochemical reactions. The synthesis of exotic and strained molecules is especially attractive with photochemical techniques because of the associated efficient and mild reaction conditions. We have understood the photophysics and subsequent photochemistry of a possible cubane precursor, tricyclo[4,2,0,02,5]octa-3,7-diene with complete active space self-consistent field (CASSCF) calculations with an (8,7) active space and the ANO-S-VDZP basis set to. The CASSCF energies were corrected with a second-order perturbative correction CASPT2(8,7)/ANO-S-VDZP. The S0 → S1 vertical excitation energy of 1 is 6.25 eV, which is a π → π* excitation. The minimum energy path from the S1 Franck-Condon point leads to a 4π-disrotatory electrocyclic ring-opening reaction to afford bicyclo[4,2,0]octa-2,4,7-triene. The 2D potential energy surface scan located a rhomboidal S1/S0 minimum energy crossing point connecting 1 and cubane, suggesting that a cycloaddition is theoretically possible. We used the fewest switches surface hopping to study the photodynamics of this cycloaddition: 85% of 1722 trajectories relaxed to eight products; the major products are bicyclo[4,2,0]octa-2,4,7-triene (30%) and cycloocta-1,3,5,7-tetraene (32%). Only 0.4% of trajectories undergo a [2 + 2] cycloaddition to form cubane.

11.
Chemistry ; 25(62): 14140-14147, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390107

RESUMO

One-electron reduction of corannulene, C20 H10 , with Li metal in diglyme resulted in crystallization of [{Li+ (diglyme)2 }4 (C20 H10 .- )2 (C20 H10 -C20 H10 )2- ] (1), as revealed by single-crystal X-ray diffraction. This hybrid product contains two corannulene monoanion-radicals along with a dianionic dimer, crystallized with four Li+ ions wrapped by diglyme molecules. The dimeric (C20 H10 -C20 H10 )2- anion provides the first crystallographically confirmed example of spontaneous radical dimerization for C20 H10 .- . The C-C bond length between the two C20 H10 .- bowls of 1.588(5) Šis consistent with the single σ-bond character of the linker. The trans-disposition of two bowls in the centrosymmetric (C20 H10 -C20 H10 )2- dimer is observed with the torsion angle around the central C-C bond of 180°. Comprehensive theoretical analysis of formation/decomposition processes of the dimeric dianion has been carried out in order to evaluate the nature of bonding and energetics of the C20 H10 .- coupling. It is found that such σ-bonded dimers are thermodynamically unstable due to large preparation energy and repulsive Pauli component of the bonding, but kinetically persistent due to a high energy barrier provided by the existing spin-crossing point.

12.
J Comput Chem ; 39(28): 2385-2396, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30306575

RESUMO

In this study, the first comprehensive theoretical investigation of the stability of functionalized fullerene-based cations [R-C60 ]+ and its relationship with the nature of the attached R-group was performed. C60 -Fullerene core was functionalized with an alkyl group of different length (R = (CH2 )n CH3 , where n = 0-9). This set was further complemented by bulky isopropyl and tert-butyl and conjugated phenyl groups. A detailed study of the relative stability of target cationic species was accompanied by in-depth investigation of their electronic structure and aromaticity using a large set of descriptors of different nature. The stability of target species was considered with respect to two alternative and competing mechanisms of bond breaking, namely, heterolytic ([R-C60 ]+ → R+ + C60 ) and homolytic ([R-C60 ]+ → R• + C60 +• ) ones. The transformation of strained sp2 -carbon atom in unperturbed C60 -fullerene to nonconstrained tetrahedral sp3 -type in functionalized derivatives was found to be the driving force for the formation of its functionalized cations. In spite of the fact that all systems under consideration were found to be corresponding to local minima on corresponding potential energy surfaces, the functionalization of C60 -core with the smallest and simplest methyl group resulted in most stable compound, as evaluated by bonding energy between R+ and fullerene fragment (in the light of both mechanisms). Subsequent elongation of the alkyl chain or introducing bulky groups led to notable decrease of the bonding energy and, as consequence, of the stability within the framework of heterolytic bond cleavage, whereas homolytic pathway assumes opposite-slight increase of stability along with lengthening of the R-group. The orbital interaction (ΔEorb ) was identified as the main driving force for these trends. In general, the homolytic path was found to be dominating for small-length R-groups such as those with n = 0 and 1. At n = 2, heterolytic and homolytic pathways are equally probable (the difference in corresponding bonding energies is about 1 kcal/mol). However, when the alkyl chain becomes longer (n = 3-9), the cationic bond cleavage appears as the most energetically favorable. © 2018 Wiley Periodicals, Inc.

13.
J Org Chem ; 82(19): 10167-10173, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28836439

RESUMO

We report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides (NDI) 1 using thionating agents such as Lawesson's reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that 7 was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDI 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Hückel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T1 state with a phosphorescence 3(7a)* lifetime of τP = 395 µs at 77 K indicative of the formation of the corresponding "aromatic triplet" species according to the Baird's rule of aromaticity.

14.
J Comput Chem ; 37(25): 2266-78, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27425181

RESUMO

The first comprehensive theoretical study of stability of hub-functionalized corannulene cations [R-C20 H10 ](+) as the function of the nature of R-group was accomplished. The initial set of linear alkyl R-group of different length (R=(CH2 )n CH3 , n = 0-9) was augmented by groups which form stable organic cations, such as tert-butyl, isopropyl, allyl, and phenyl. Investigation of relative stability (with bonding energy as the measure) was accompanied by detailed study of changes in aromaticity using a large set of descriptors, as well as by the evaluation of energetics of possible migration of R-group from the hub-site to the spoke-position. Decrease in stability of functionalized corannulene cations with lengthening of R-group and/or replacing it with branched alkyl group was found to be the general trend. At the same time, π-conjugated groups such as allyl or phenyl ones, stabilize the system. All methods/approaches applied unambiguously indicated that the actual stability of the hub-functionalized corannulene cations is indeed a multi faceted phenomenon. Important contributions come from different interplay between attractive (ΔEorb vs. ΔEelstat ) and repulsive (ΔEPauli ) components of the bonding, from changes in aromatic behavior of rings in polyaromatic fragment, and from activation barrier for the process of migration of R-group. © 2016 Wiley Periodicals, Inc.

15.
Org Biomol Chem ; 14(3): 920-39, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26608561

RESUMO

Aziridinium ions are useful reactive intermediates for the synthesis of enantiomerically enriched building blocks. However, N,N-dialkyl aziridinium ions are relatively underutilized in the synthesis of optically active molecules as compared to other three-membered ring cogeners, aziridines and epoxides. The characterization of both optically active aziridinium ions and secondary ß-halo amines as the precursor molecules of aziridinium ions has been scarcely reported and is often unclear. In this paper, we report for the first time the preparation and experimental and theoretical characterization of optically active aziridinium ions and secondary ß-halo amines. Optically active secondary N,N-substituted ß-halo amines were efficiently synthesized from N,N-substituted alaninol via formation and ring opening at the more hindered carbon of aziridinium ions by halides. Optically active ß-halo amines and aziridinium ions were characterized by NMR and computational analyses. The structure of an optically active ß-chloro amine was confirmed via X-ray crystallographic analysis. The aziridinium ions derived from N,N-dibenzyl alaniol remained stable only for several hours, which was long enough for analyses of NMR and optical activity. The stereospecific ring opening of aziridinium ions by halides was computationally studied using DFT and highly-accurate DLPNO-CCSD(T) methods. The highly regioselective and stereoselective ring opening of aziridinium ions was applied for efficient one-pot conversion of ß-alaninols to enantiomerically enriched ß-amino alcohols, ß-amino nitriles, and vicinal diamine derivatives.


Assuntos
Amino Álcoois/química , Aziridinas/química , Diaminas/síntese química , Nitrilas/síntese química , Cristalografia por Raios X , Diaminas/química , Halogenação , Íons/química , Modelos Moleculares , Estrutura Molecular , Nitrilas/química , Teoria Quântica , Estereoisomerismo
16.
Phys Chem Chem Phys ; 18(17): 11781-91, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26795551

RESUMO

The first comprehensive theoretical investigation of aromaticity in functionalized corannulene cations of general formula [CH3-C20H10](+) was accomplished. The experimentally known system [CH3-hub-C20H10](+) was augmented by two other possible isomers, namely, rim- and spoke-ones. Changes in aromaticity, when going from neutral corannulene to its functionalized cations, were monitored with the help of descriptors of different nature such as structure-based HOMA, topological PDI and FLU, and magnetic NICS. A highly efficient tool for analysis and visualization of delocalization and conjugation named ACID was also utilized. In the final step, a complete set of (1)H and (13)C chemical shifts was calculated and compared with the available experimental data. Conservation of aromaticity of 6-membered rings along with vanishing anti-aromatic character of central 5-membered rings was found to be the main reason for the exceptional stability of the hub-isomer. At the same time, functionalization of the corannulene moiety at the rim- or spoke-site resulted in dramatic elimination of aromaticity of 6-membered rings, whereas anti-aromatic character of the central ring remained. Altogether, it led to much lower stability of these isomers in comparison with that of the hub-one.

17.
Angew Chem Int Ed Engl ; 55(43): 13465-13469, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27654127

RESUMO

N-Heterocyclic carbenes (NHC's) are known to serve as efficient substrates for the stabilization of various transient species possessing low-valent Group 14 elements and for the generation of double E=C bonds. Herein, we report that the thermal tri- and tetramerizations of pyridoannulated silylene 1 lead to the formation of remarkably stable silenes 2 and 3 featuring zwitterionic distribution of electron density. Co-oligomerization of 1 and its germanium analogue gives a related tetrameric product 4 containing low-valent germanium atom stabilized by binding with the partial carbene-character C atom. Bonding situations in 2-4 are best described as silene or germene with the significant zwitterionic distribution of electron density. The singlet diradical electronic state of 2 is 10 kcal mol-1 higher than the ground state configuration.

18.
Phys Chem Chem Phys ; 17(3): 1987-2000, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475579

RESUMO

Experimentally known adducts of SO2 with transition metal complexes have distinct geometries. In the present paper, we demonstrate by a bonding analysis that this is a direct consequence of sulfur dioxide acting as an acceptor in one set, square-planar complexes of d(8) and linear two-coordinated complexes of d(10) transition metals, and as a donor with other compounds, well-known paddle-wheel [Rh2(O2CCF3)4] and square-pyramidal [M(CO)5] (M = Cr, W) complexes. Bonding energy computations were augmented by the natural bond orbital (NBO) analysis and energy decomposition analysis (EDA). When the SO2 molecule acts as an acceptor, bonding in the bent coordination mode to the axial position of the d(8) or the d(10) metal center, the dominant contributor to the bonding is LAO(S) (Lewis Acidic Orbital, mainly composed of the px-orbital of the S atom) as an acceptor, while a dz(2) orbital centered on the metal is the corresponding donor. In contrast, the distinct collinear (or linear) coordination of the SO2 bound at the axial position of [Rh2(O2CCF3)4] and/or [M(CO)5] is associated with a dominant donation from a lone pair localized on the sulfur atom, σ*(Rh-Rh) and/or empty LAO(M) (mainly composed of the dz(2) orbital of the metal), respectively, acting as an acceptor orbital. The donor/acceptor capabilities of the SO2 molecule were also checked in adducts with organic Lewis acids (BH3, B(CF3)3) and Lewis bases (NH3, N(CH3)3, N-heterocyclic carbene).

19.
Science ; 383(6682): 524-531, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301009

RESUMO

High-purity precursor materials are vital for high-efficiency perovskite solar cells (PSCs) to reduce defect density caused by impurities in perovskite. In this study, we present aqueous synthesized perovskite microcrystals as precursor materials for PSCs. Our approach enables kilogram-scale mass production and synthesizes formamidinium lead iodide (FAPbI3) microcrystals with up to 99.996% purity, with an average value of 99.994 ± 0.0015%, from inexpensive, low-purity raw materials. The reduction in calcium ions, which made up the largest impurity in the aqueous solution, led to the greatest reduction in carrier trap states, and its deliberate introduction was shown to decrease device performance. With these purified precursors, we achieved a power conversion efficiency (PCE) of 25.6% (25.3% certified) in inverted PSCs and retained 94% of the initial PCE after 1000 hours of continuous simulated solar illumination at 50°C.

20.
Org Lett ; 25(41): 7512-7517, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37811898

RESUMO

A facile approach toward chromenopyrrolidines was achieved under mild conditions via organophotocatalyzed aerobic decarboxylative [2 + 2 + 1] annulation of chromones with N-arylglycines, in which N-arylglycines perform dual roles (i.e., radical precursor and methylene provider). Mechanistic studies suggested that a Giese-type radical addition and consequent Mannich pathway were likely responsible for the annulation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA