Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2321710121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885377

RESUMO

Somatostatin receptor 5 (SSTR5) is an important G protein-coupled receptor and drug target for neuroendocrine tumors and pituitary disorders. This study presents two high-resolution cryogenicelectron microscope structures of the SSTR5-Gi complexes bound to the cyclic neuropeptide agonists, cortistatin-17 (CST17) and octreotide, with resolutions of 2.7 Å and 2.9 Å, respectively. The structures reveal that binding of these peptides causes rearrangement of a "hydrophobic lock", consisting of residues from transmembrane helices TM3 and TM6. This rearrangement triggers outward movement of TM6, enabling Gαi protein engagement and receptor activation. In addition to hydrophobic interactions, CST17 forms conserved polar contacts similar to somatostatin-14 binding to SSTR2, while further structural and functional analysis shows that extracellular loops differently recognize CST17 and octreotide. These insights elucidate agonist selectivity and activation mechanisms of SSTR5, providing valuable guidance for structure-based drug development targeting this therapeutically relevant receptor.


Assuntos
Octreotida , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Humanos , Octreotida/química , Octreotida/farmacologia , Octreotida/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/química , Microscopia Crioeletrônica , Ligação Proteica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Somatostatina/metabolismo , Somatostatina/química , Somatostatina/análogos & derivados , Modelos Moleculares , Células HEK293
2.
Plant Physiol ; 191(4): 2489-2505, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36659854

RESUMO

Bud dormancy is an important trait in geophytes that largely affects their flowering process and vegetative growth after dormancy release. Compared with seed dormancy, the regulation of bud dormancy is still largely unclear. Abscisic acid (ABA) acts as the predominant hormone that regulates the whole dormancy process. In Gladiolus (Gladiolus hybridus), cold storage promotes corm dormancy release (CDR) by repressing ABA biosynthesis and signaling. However, the mechanisms governing ABA-related processes during CDR via epigenetics are poorly understood. Here, we show that class I BASIC PENTACYSTEINE2, (GhBPC2) directly binds to 9-CIS-EPOXYCAROTENOID DIOXYGENASE (GhNCED) and ABA INSENSITIVE5 (GhABI5) loci and down-regulates their expression to accelerate CDR. During CDR, histone modifications change dramatically at the GhBPC2-binding loci of GhABI5 with an increase in H3K27me3 and a decrease in H3K4me3. GhBPC2 is involved in both H3K27me3 and H3K4me3 and fine-tunes GhABI5 expression by recruiting polycomb repressive complex 2 (PRC2) and the chromatin remodeling factor EARLY BOLTING IN SHORT DAYS (GhEBS). These results show GhBPC2 epigenetically regulates CDR in Gladiolus by mediating GhABI5 expression with PRC2 and GhEBS.


Assuntos
Ácido Abscísico , Histonas , Histonas/metabolismo , Ácido Abscísico/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Germinação/fisiologia
3.
BMC Cardiovasc Disord ; 24(1): 123, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402377

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. METHODS: Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein-protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. RESULTS: Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. CONCLUSION: Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.


Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Humanos , Ferroptose/genética , Receptor 4 Toll-Like/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Classe I de Fosfatidilinositol 3-Quinases , Biomarcadores
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 232-236, 2024 Mar 30.
Artigo em Zh | MEDLINE | ID: mdl-38605628

RESUMO

In order to realize the diagnosis of slit lamp in cross-regional patients and improve the real-time and convenience of diagnosis, a remote slit lamp diagnosis platform based on Internet of Things (IoT) technology is designed. Firstly, the feasibility of remote slit lamp is analyzed. Secondly, the IoT platform architecture of doctor/server/facility (D/S/F) is proposed and a remote slit lamp is designed. Finally, the performance of the remote slit lamp diagnostic platform is tested. The platform solves the communication problem of distributed slit lamps and realizes respectively numerical control of multi-area slit lamp by multi-eye experts. The test results show that the remote control delay of the platform is less than 20 ms, which supports multiple experts to diagnose multiple patients separately.


Assuntos
Internet das Coisas , Lâmpada de Fenda , Humanos , Tecnologia
5.
Plant J ; 110(4): 961-977, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199890

RESUMO

Water stress can severely impact plant growth, productivity and yield. Consequently, plants have evolved various strategies through which they can respond and adapt to their environment. XERICO (XER) is a stress-responsive RING E3 ubiquitin ligase that modulates abscisic acid (ABA) levels and promotes drought tolerance when overexpressed. To better understand the biological role of XER in stress responses, we characterized a xer-1 hypomorphic mutant and a CRISPR/Cas9-induced xer-2 null mutant in Arabidopsis. Both xer mutant alleles exhibited increased drought sensitivity, supporting the results from overexpression studies. Furthermore, we discovered that both xer mutants have greater stomatal indices and that XER is expressed in epidermal cells, indicating that XER functions in the epidermis to repress stomatal development. To explore XER spatiotemporal and stress-dependent regulation, we conducted a yeast one-hybrid screen and found that CBF4/DREB1D associates with the XER 5' untranslated region (5'-UTR). We generated three cbf4 null mutants with CRISPR/Cas9 and showed that CBF4 negatively regulates ABA responses, promotes stomatal development and reduces drought tolerance, in contrast to the roles shown for XER. CBF4 is induced by ABA and osmotic stress, and localizes to the nucleus where it downregulates XER expression via the DRE element in its 5'-UTR. Lastly, genetic interaction studies confirmed that xer is epistatic to cbf4 in stomatal development and in ABA, osmotic and drought stress responses. We propose that the repression of XER by CBF4 functions to attenuate ABA signaling and stress responses to maintain a balance between plant growth and survival under adverse environmental conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Estresse Fisiológico/genética , Transativadores/metabolismo
6.
Plant Cell Environ ; 46(7): 2078-2096, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128741

RESUMO

Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by surcose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.


Assuntos
Ácido Abscísico , Dormência de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/metabolismo , Citocininas , Açúcares , Regulação da Expressão Gênica de Plantas
7.
Plant Cell ; 32(6): 1886-1904, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265266

RESUMO

Spatiotemporal regulation of gene expression is critical for proper developmental timing in plants and animals. The transcription factor FUSCA3 (FUS3) regulates developmental phase transitions by acting as a link between hormonal pathways in Arabidopsis (Arabidopsis thaliana). However, the mechanisms governing its spatiotemporal expression pattern are poorly understood. Here, we show that FUS3 is repressed in the ovule integuments and seed endosperm. FUS3 repression requires class I BASIC PENTACYSTEINE (BPC) proteins, which directly bind GA/CT cis-elements in FUS3 and restrict its expression pattern. During vegetative and reproductive development, FUS3 derepression in bpc1-1 bpc2 (bpc1/2) double mutant or misexpression in ProML1:FUS3 lines causes dwarf plants carrying defective flowers and aborted ovules. After fertilization, ectopic FUS3 expression in bpc1/2 endosperm or ProML1:FUS3 endosperm and endothelium increases endosperm nuclei proliferation and seed size, causing delayed or arrested embryo development. These phenotypes are rescued in bpc1/2 fus3-3 Finally, class I BPCs interact with FIS-PRC2 (FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex2), which represses FUS3 in the endosperm during early seed development. We propose that BPC1 and 2 promote the transition from reproductive to seed development by repressing FUS3 in ovule integuments. After fertilization, BPC1 and 2 and FIS-PRC2 repress FUS3 in the endosperm to coordinate early endosperm and embryo growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Sementes/genética , Sementes/fisiologia , Técnicas do Sistema de Duplo-Híbrido
8.
Chromosome Res ; 30(1): 109-121, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142952

RESUMO

DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.


Assuntos
Desmetilação do DNA , Fatores de Transcrição , Animais , Sítios de Ligação , DNA/metabolismo , Metilação de DNA , Genoma , Humanos , Mamíferos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Psychol Health Med ; 27(8): 1821-1831, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296977

RESUMO

This study aims to identify the risk factors of suicidal ideation (SI) in a large sample of Chinese adults in the labour force. A total of 4136 eligible participants in the labour force were recruited from the routine health check-up cohort. Univariate and multivariate logistic regression were used to identify the factors associated with 12-month and lifetime SI. 175 (4.2%) subjects reported SI in the past twelve months, and 223 (5.4%) reported SI during their lifetime. The results showed that being divorced or widowed, religious belief, personal history of chronic disease and mental illness, family history of mental illness and suicide, and self-assessed childhood happiness were associated with both 12-month and lifetime SI. Additional associations were found between 12-month SI and the following factors: working overtime frequently, low monthly income, and having bachelor's degree. Moreover, being single is a risk factor of lifetime SI while not significant for 12-month SI. The present study identified several risk factors of 12-month and lifetime SI, which could potentially help develop targeted interventions for high-risk suicidal Chinese adults in the labour force.


Assuntos
Transtornos Mentais , Suicídio , Adulto , Criança , China/epidemiologia , Emprego , Humanos , Fatores de Risco , Ideação Suicida
10.
Pharm Res ; 38(5): 831-842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33974211

RESUMO

PURPOSE: Proper taste-masking formulation design is a critical issue for instant-dissolving tablets (IDTs). The purpose of this study is to use the electronic tongue to design the additives of the 3D printed IDTs to improve palatability. METHODS: A binder jet 3D printer was used to prepare IDTs of levetiracetam. A texture analyzer and dissolution apparatus were used to predict the oral dispersion time and in vitro drug release of IDTs, respectively. The palatability of different formulations was investigated using the ASTREE electronic tongue in combination with the design of experiment and a model for masking bitter taste. Human gustatory sensation tests were conducted to further evaluate the credibility of the results. RESULTS: The 3D printed tablets exhibited rapid dispersion (<30 s) and drug release (2.5 min > 90%). The electronic tongue had an excellent ability of taste discrimination, and levetiracetam had a good linear sensing performance based on a partial least square regression analysis. The principal component analysis was used to analyze the signal intensities of different formulations and showed that 2% sucralose and 0.5% spearmint flavoring masked the bitterness well and resembled the taste of corresponding placebo. The results of human gustatory sensation test were consistent with the trend of the electronic tongue evaluation. CONCLUSIONS: Owing to its objectivity and reproducibility, this technique is suitable for the design and evaluation of palatability in 3D printed IDT development.


Assuntos
Composição de Medicamentos/instrumentação , Nariz Eletrônico , Excipientes/química , Levetiracetam/química , Paladar , Administração Oral , Composição de Medicamentos/métodos , Humanos , Levetiracetam/administração & dosagem , Impressão Tridimensional , Reprodutibilidade dos Testes , Comprimidos
11.
BMC Cardiovasc Disord ; 21(1): 441, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530726

RESUMO

PURPOSE: Previous clinical studies have suggested an effect of gender on outcome after out-of-hospital cardiac arrest, but the results are conflicting and there is no uniform agreement regarding gender differences in survival and prognosis. The present study was aimed to investigate the interaction between gender and post resuscitation interventions on neurological outcome in an asphyxial rat model of cardiac arrest. METHODS: Asphyxia was induced by blocking the endotracheal tube in 120 adult Sprague-Dawley rats (60 males and 60 females) at the same age. Cardiopulmonary resuscitation (CPR) was started after 5 min of untreated cardiac arrest. Animals were randomized into one of the three post resuscitation care intervention groups (n = 40, 20 males) immediately after resuscitation: (1) normothermic control (NC): ventilated with 2% N2/98% O2 for 1 h under normothermia; (2) targeted temperature management (TTM): ventilated with 2% N2/98% O2 for 1 h under hypothermia; (3) hydrogen inhalation (HI): ventilated with 2% H2/98% O2 for 1 h under normothermia. Physiological variables were recorded during the 5 h post resuscitation monitoring period. Neurological deficit score (NDS) and accumulative survival were used to assess 96 h outcomes. Mutual independence analysis and Mantel-Haenszel stratified analysis were used to explore the associations among gender, intervention and survival. RESULTS: The body weights of female rats were significantly lighter than males, but CPR characteristics did not differ between genders. Compared with male rats, females had significantly lower mean arterial pressure, longer onset time of the electroencephalogram (EEG) burst and time to normal EEG trace (TTNT) in the NC group; relatively longer TTNT in the TTM group; and substantially longer TTNT, lower NDSs, and higher survival in the HI group. Mutual independence analysis revealed that both gender and intervention were associated with neurological outcome. Mantel-Haenszel stratified analysis demonstrated that female rats had significantly higher survival rate than males when adjusted for the confounder intervention. CONCLUSION: In this rat model cardiac arrest and CPR, gender did not affect resuscitation but associated with neurological outcome. The superiority of female rats in neurological recovery was affected by post resuscitation interventions and female rats were more likely to benefit from hydrogen therapy.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Reanimação Cardiopulmonar , Parada Cardíaca/terapia , Animais , Asfixia/complicações , Modelos Animais de Doenças , Feminino , Parada Cardíaca/etiologia , Parada Cardíaca/fisiopatologia , Hemodinâmica , Masculino , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores Sexuais , Fatores de Tempo
12.
Plant Cell Rep ; 40(10): 1889-1906, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34259890

RESUMO

KEY MESSAGE: A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.


Assuntos
Lilium/genética , Tricomas/citologia , Tricomas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Lilium/citologia , Lilium/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão , Mutação , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/crescimento & desenvolvimento
13.
Angew Chem Int Ed Engl ; 60(7): 3661-3671, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166432

RESUMO

In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.

14.
Mol Pharmacol ; 98(3): 192-202, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32580997

RESUMO

Neuronal voltage-gated potassium channels (Kv) are critical regulators of electrical activity in the central nervous system. Mutations in the KCNQ (Kv7) ion channel family are linked to epilepsy and neurodevelopmental disorders. These channels underlie the neuronal "M-current" and cluster in the axon initial segment to regulate the firing of action potentials. There is general consensus that KCNQ channel assembly and heteromerization are controlled by C-terminal helices. We identified a pediatric patient with neurodevelopmental disability, including autism traits, inattention and hyperactivity, and ataxia, who carries a de novo frameshift mutation in KCNQ3 (KCNQ3-FS534), leading to truncation of ∼300 amino acids in the C terminus. We investigated possible molecular mechanisms of channel dysfunction, including haplo-insufficiency or a dominant-negative effect caused by the assembly of truncated KCNQ3 and functional KCNQ2 subunits. We also used a recently recognized property of the KCNQ2-specific activator ICA-069673 to identify assembly of heteromeric channels. ICA-069673 exhibits a functional signature that depends on the subunit composition of KCNQ2/3 channels, allowing us to determine whether truncated KCNQ3 subunits can assemble with KCNQ2. Our findings demonstrate that although the KCNQ3-FS534 mutant does not generate functional channels on its own, large C-terminal truncations of KCNQ3 (including the KCNQ3-FS534 mutation) assemble efficiently with KCNQ2 but fail to promote or stabilize KCNQ2/KCNQ3 heteromeric channel expression. Therefore, the frequent assumption that pathologies linked to KCNQ3 truncations arise from haplo-insufficiency should be reconsidered in some cases. Subtype-specific channel activators like ICA-069673 are a reliable tool to identify heteromeric assembly of KCNQ2 and KCNQ3. SIGNIFICANCE STATEMENT: Mutations that truncate the C terminus of neuronal Kv7/KCNQ channels are linked to a spectrum of seizure disorders. One role of the multifunctional KCNQ C terminus is to mediate subtype-specific assembly of heteromeric KCNQ channels. This study describes the use of a subtype-specific Kv7 activator to assess assembly of heteromeric KCNQ2/KCNQ3 (Kv7.2/Kv7.3) channels and demonstrates that large disease-linked and experimentally generated C-terminal truncated KCNQ3 mutants retain the ability to assemble with KCNQ2.


Assuntos
Mutação da Fase de Leitura , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais , Criança , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ3/genética , Masculino , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Xenopus laevis
15.
J Am Chem Soc ; 142(5): 2438-2447, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927894

RESUMO

Engineering a stable solid electrolyte interphase (SEI) is critical for suppression of lithium dendrites. However, the formation of a desired SEI by formulating electrolyte composition is very difficult due to complex electrochemical reduction reactions. Here, instead of trial-and-error of electrolyte composition, we design a Li-11 wt % Sr alloy anode to form a SrF2-rich SEI in fluorinated electrolytes. Density functional theory (DFT) calculation and experimental characterization demonstrate that a SrF2-rich SEI has a large interfacial energy with Li metal and a high mechanical strength, which can effectively suppress the Li dendrite growth by simultaneously promoting the lateral growth of deposited Li metal and the SEI stability. The Li-Sr/Cu cells in 2 M LiFSI-DME show an outstanding Li plating/stripping Coulombic efficiency of 99.42% at 1 mA cm-2 with a capacity of 1 mAh cm-2 and 98.95% at 3 mA cm-2 with a capacity of 2 mAh cm-2, respectively. The symmetric Li-Sr/Li-Sr cells also achieve a stable electrochemical performance of 180 cycles at an extremely high current density of 30 mA cm-2 with a capacity of 1 mAh cm-2. When paired with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, Li-Sr/LFP cells in 2 M LiFSI-DME electrolytes and Li-Sr/NMC811 cells in 1 M LiPF6 in FEC:FEMC:HFE electrolytes also maintain excellent capacity retention. Designing SEIs by regulating Li-metal anode composition opens up a new and rational avenue to suppress Li dendrites.

16.
Epilepsia ; 61(8): 1678-1690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32652600

RESUMO

OBJECTIVE: Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS: In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS: Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE: This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.


Assuntos
Anilidas/farmacologia , Anticonvulsivantes/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cálcio/metabolismo , Carbamatos/farmacologia , Epilepsia/tratamento farmacológico , Canais de Potássio KCNQ/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Convulsões/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/classificação , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Epilepsia/metabolismo , Técnicas In Vitro , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Proteínas Luminescentes/genética , Potenciais da Membrana , Mutação , Neurônios/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Convulsões/metabolismo , Peixe-Zebra
17.
Lipids Health Dis ; 19(1): 233, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148263

RESUMO

PURPOSE: Previous studies have shown that serum carcinoembryonic antigen (CEA) is independently associated with metabolic syndrome (MetS). However, these studies were mainly cross-sectional analyses, and cause was not clarified. In the present study, two bidirectional cohort studies were conducted to investigate the bidirectional associations between CEA and MetS using a Chinese male sample cohort. METHODS: The initial longitudinal cohort included 9629 Chinese males enrolled from January 2010 to December 2015. Two bidirectional cohorts were conducted in the study: subcohort A (from CEA to MetS, n = 6439) included participants without MetS at baseline to estimate the risk of developing incident MetS; subcohort B (from MetS to CEA, n = 8533) included participants without an elevated CEA level (Hyper-CEA) at baseline to examine the risk of developing incident Hyper-CEA. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. RESULTS: In subcohort A, the incidence densities of MetS among participants with and without Hyper-CEA were 84.56 and 99.28 per 1000 person-years, respectively. No significant effects of Hyper-CEA on incident MetS were observed in subcohort A (HR, 0.89; 95% CI, 0.71 to 1.12; P = 0.326). In subcohort B, a higher incidence density of Hyper-CEA was found among participants with MetS (33.42 and 29.13 per 1000 person-years for those with and without MetS, respectively). For nonsmoking participants aged > 65 years, MetS increased the risk of incident Hyper-CEA (HR, 1.87; 95% CI, 1.09 to 3.20; P = 0.022). CONCLUSION: For the direction of CEA on incident MetS, no significant association was observed. For the direction of MetS on incident Hyper-CEA, MetS in nonsmoking elderly men could increase the risk of incident Hyper-CEA, while this association was not found in other stratified participants. The clinical implications of the association between CEA and MetS should be interpreted with caution.


Assuntos
Antígeno Carcinoembrionário/sangue , Síndrome Metabólica/sangue , Adulto , Povo Asiático , Estudos de Coortes , Humanos , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Fumar
18.
BMC Mol Biol ; 18(1): 9, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376714

RESUMO

BACKGROUND: SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a -17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown. RESULTS: We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the -17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region. This DNA demethylation occurred in mitomycin-C-treated nonproliferating cells at both regulatory regions, suggesting active DNA demethylation. Furthermore, ectopic RUNX1 expression induced significant endogenous SPI1 expression, although its expression level was much lower than that of natively SPI1-expressing monocyte cells. CONCLUSIONS: These results suggest the novel role of RUNX1 as an inducer of DNA demethylation at the SPI1 regulatory regions, although the mechanism of RUNX1-induced DNA demethylation remains to be explored.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Metilação de DNA , Replicação do DNA , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Sequência de Bases , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Regulação para Cima
19.
J Bacteriol ; 198(19): 2732-42, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27457715

RESUMO

UNLABELLED: Toxic shock syndrome toxin 1 (TSST-1) is a Staphylococcus aureus superantigen that has been implicated in both menstrual and nonmenstrual toxic shock syndrome (TSS). Despite the important role of TSST-1 in severe human disease, a comprehensive understanding of staphylococcal regulatory factors that control TSST-1 expression remains incomplete. The S. aureus exotoxin expression (Sae) operon contains a well-characterized two-component system that regulates a number of important exotoxins in S. aureus, although regulation of TSST-1 by the Sae system has not been investigated. We generated a defined deletion mutant of the Sae histidine kinase sensor (saeS) in the prototypic menstrual TSS strain S. aureus MN8. Mutation of saeS resulted in a complete loss of TSST-1 expression. Using both luciferase reporter experiments and quantitative real-time PCR, we demonstrate that the Sae system is an important transcriptional activator of TSST-1 expression. Recombinant SaeR was able to bind directly to the tst promoter to a region containing two SaeR consensus binding sites. Although the stand-alone SarA transcriptional regulator has been shown to be both a positive and a negative regulator of TSST-1, deletion of sarA in S. aureus MN8 resulted in a dramatic overexpression of TSST-1. As expected, mutation of agr also reduced TSST-1 expression, but this phenotype appeared to be independent of Sae. A double mutation of saeS and sarA resulted in the loss of TSST-1 expression. This work indicates that the Sae system is a dominant and direct transcriptional activator that is required for expression of TSST-1. IMPORTANCE: The TSST-1 superantigen is an exotoxin, produced by some strains of S. aureus, that has a clear role in both menstrual and nonmenstrual TSS. Although the well-characterized agr quorum sensing system is a known positive regulator of TSST-1, the molecular mechanisms that directly control TSST-1 expression are only partially understood. Our studies demonstrate that the Sae two-component regulatory system is a positive transcriptional regulator that binds directly to the TSST-1 promoter, and furthermore, our data suggest that Sae is required for expression of TSST-1. This work highlights how major regulatory circuits can converge to fine-tune exotoxin expression and suggests that the Sae regulatory system may be an important target for antivirulence strategies.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Quinases/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/genética , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Staphylococcus aureus/genética , Superantígenos/genética
20.
Nucleic Acids Res ; 42(13): 8527-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981509

RESUMO

Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3'-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5'-to-3' helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional extension processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentrations. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and maintains telomere length.


Assuntos
DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA