Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963244

RESUMO

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Complexo Ferro-Dextran , Imunoterapia Adotiva , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
2.
Nano Lett ; 24(22): 6568-6575, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787693

RESUMO

Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.

3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674049

RESUMO

DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/enzimologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Metilação de DNA
4.
Gastroenterology ; 163(5): 1267-1280.e7, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35718227

RESUMO

BACKGROUND & AIMS: The stroma in pancreatic ductal adenocarcinoma (PDAC) contributes to its immunosuppressive nature and therapeutic resistance. Herein we sought to modify signaling and enhance immunotherapy efficacy by targeting multiple stromal components through both intracellular and extracellular mechanisms. METHODS: A murine liver metastasis syngeneic model of PDAC was treated with focal adhesion kinase inhibitor (FAKi), anti-programmed cell death protein 1 (PD-1) antibody, and stromal hyaluronan (HA) degradation by PEGylated recombinant human hyaluronidase (PEGPH20) to assess immune and stromal modulating effects of these agents and their combinations. RESULTS: The results showed that HA degradation by PEGPH20 and reduction in phosphorylated FAK expression by FAKi leads to improved survival in PDAC-bearing mice treated with anti-PD-1 antibody. HA degradation in combination with FAKi and anti-PD-1 antibody increases T-cell infiltration and alters T-cell phenotype toward effector memory T cells. FAKi alters the expression of T-cell modulating cytokines and leads to changes in T-cell metabolism and increases in effector T-cell signatures. HA degradation in combination with anti-PD-1 antibody and FAKi treatments reduces granulocytes, including granulocytic- myeloid-derived suppressor cells and decreases C-X-C chemokine receptor type 4 (CXCR4)-expressing myeloid cells, particularly the CXCR4-expressing granulocytes. Anti-CXCR4 antibody combined with FAKi and anti-PD-1 antibody significantly decreases metastatic rates in the PDAC liver metastasis model. CONCLUSIONS: This represents the first preclinical study to identify synergistic effects of targeting both intracellular and extracellular components within the PDAC stroma and supports testing anti-CXCR4 antibody in combination with FAKi as a PDAC treatment strategy.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Adenocarcinoma/patologia , Hialuronoglucosaminidase/farmacologia , Hialuronoglucosaminidase/uso terapêutico , Ácido Hialurônico , Carcinoma Ductal Pancreático/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal , Citocinas/farmacologia , Morte Celular , Polietilenoglicóis/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Small ; 19(44): e2303324, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37391273

RESUMO

Converting CO2 into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co2+ , Ni2+ , Cu2+ , and Zn2+ ) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO2 conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties. Photocatalysis reactions reveal that the Co-metallized PyPor-COF (Co-PyPor-COF) achieves a CO production rate as high as up to 9645 µmol g-1 h-1 with a selectivity of 96.7% under light irradiation, which is more than 45 times higher than that of the metal-free PyPor-COF, while Ni-metallized PyPor-COF (Ni-PyPor-COF) can further tandem catalyze the generated CO to CH4 with a production rate of 463.2 µmol g-1 h-1 . Experimental analyses and theory calculations reveal that their remarkable performance enhancement on CO2 photoreduction should be attributed to the incorporated metal sites in the COF skeleton, which promotes the adsorption and activation of CO2 and the desorption of generated CO and even reduces the reaction energy barrier for the formation of different intermediates. This work demonstrates that by metallizing photoactive COFs, effective photocatalysts for CO2 conversion can be achieved.

6.
J Med Virol ; 95(1): e28340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420584

RESUMO

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of Coronavirus Disease 2019 (COVID-19). Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a 6-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large T cell receptor/B cell receptor clones, decreased diversity, abnormal class-switch recombination, and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+ CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+ CD4- T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+ CD4- T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Prospectivos , Linfócitos B , Anticorpos Antivirais , Sobreviventes
7.
Entropy (Basel) ; 25(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895503

RESUMO

In severe low-visibility environments full of smoke, because of the performance degeneration of the near-infrared (NIR) collimation system of quantum drones communication networks, the improved dual-threshold method based on trend line analysis for long-wave infrared (LWIR) quantum cascade lasers (QCLs) is proposed, to achieve target acquisition. The simulation results show that smoke-scattering noise is a steeply varying medium-high-frequency modulation. At particle sizes less than 4 µm, the traditional dual-threshold method can effectively distinguish the target information from the smoke noise, which is the advantage of the LWIR laser compared to the NIR laser. For detecting lasers with high signal-to-noise ratios (SNRs), the method can achieve good target acquisition, by setting reasonable conventional thresholds, such as 0.7 times the peak intensity and 0.8 times the peak rising velocity. At low SNRs and steep intensity variation, the method can also achieve good target acquisition, by adaptively resetting new thresholds after filtering the detecting laser, such as 0.6 times the peak intensity and 0.6 times the peak rising velocity. The results of this paper will provide a reference for the performance improvement and refinement of the collimation system for wireless quantum communication networks in low visibility.

8.
Int J Cancer ; 144(7): 1486-1495, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155891

RESUMO

Overwhelming evidence demonstrates that exosomes, a series of biologically functional small vesicles of endocytic origin carrying a variety of active constituents, especially tumor-derived exosomes, contribute to tumor progression and metastasis. This review focuses on the specific multifaceted roles of exosomes in affecting sequenced four crucial processes of metastasis, through which cancer cells spread from primary to secondary organs and finally form macroscopic metastatic lesions. First, exosomes modulate the primary tumor sites to assist cancer growth and dissemination. In this part, five main biological events are reviewed, including the transfer of oncogenic constituents, the recruitment and activation of fibroblasts, the induction of angiogenesis, immunosuppression and epithelial-mesenchymal transition (EMT) promotion. In Step 2, we list two recently disclosed mechanisms during the organ-specific homing process: the exosomal integrin model and exosomal epidermal growth factor receptor (EGFR)/miR-26/hepatocyte growth factor (HGF) model. Subsequently, Step 3 focuses on the interactions between exosomes and pre-metastatic niche, in which we highlight the specific functions of exosomes in angiogenesis, lymphangiogenesis, immune modulation and metabolic, epigenetic and stromal reprogramming of pre-metastatic niche. Finally, we summarize the mechanisms of exosomes in helping the metastatic circulating tumor cells escape from immunologic surveillance, survive in the blood circulation and proliferate in host organs.


Assuntos
Exossomos/patologia , Metástase Neoplásica/patologia , Transição Epitelial-Mesenquimal , Exossomos/genética , Exossomos/metabolismo , Humanos , Metástase Neoplásica/genética , Nicho de Células-Tronco , Microambiente Tumoral
9.
Biochem Biophys Res Commun ; 519(1): 8-14, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31474337

RESUMO

To explore the effect of double-stranded RNA-dependent kinase (PKR) in acute lung injury (ALI) and resultant acute respiratory distress syndrome (ARDS). A mouse model of lipopolysaccharide (LPS)-induced ALI was used to evaluate the levels of phosphorylated (p)-PKR and NLRP3 in lung tissue, and the protective effects of a PKR inhibitor on lung injury. And in vitro, macrophages were incubated with LPS, with or without PKR inhibitor pre-treatment. It was observed that the levels of p-PKR protein and NLRP3 protein were significantly increased compared with those in control tissues after LPS administration. Meanwhile, treatment with PKR inhibitor decreased inflammation, injury score, wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) protein levels, neutrophil count in BALF, myeloperoxidase activity and expression of high-mobility group box1(HMGB1) and interleukin(IL)-1ß in the lungs of LPS-challenged mice. In vitro, we demonstrated that the levels of p-PKR and NLRP3, and cell mortality rate were increased in macrophages which were incubated with LPS compared with those without LPS administration, and PKR inhibitor significantly suppressed the level of NLRP3, caspase-1, HMGB1 and IL-1ß. These results indicate that PKR plays a key role in ALI through NLRP3-pyrotosis pathway and pharmacological inhibition of PKR may have potential therapeutic effects in the treatment of patients with ALI and ARDS.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Modelos Animais de Doenças , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , eIF-2 Quinase/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores
10.
Hepatology ; 64(5): 1606-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533020

RESUMO

Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION: These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Colangiocarcinoma/etiologia , Retroalimentação Fisiológica , Fator Inibidor de Leucemia/fisiologia , MicroRNAs/fisiologia , Proteínas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais
11.
Tumour Biol ; 39(3): 1010428317692229, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28347250

RESUMO

Chimeric antigen receptor-engineered T cells therapy has become the hottest topic of immunotherapy, as its great successes achieved in treating refractory hematological malignancies. These successes also paved the road to novel strategies of treating various solid tumors including liver cancer. Many specific proteins can be expressed aberrantly in liver cancers; therefore, a series of experimental and clinical researches exploring chimeric antigen receptor-engineered T cells and liver cancer are in progress, acquiring obvious antitumor effect and revealing its feasibility in treating liver cancer. However, lots of challenges and obstacles are emerging simultaneously, such as low infiltration, side effects, safety of chimeric antigen receptor-engineered T cells, and limited data of studies or clinical trials. Researchers have been working out many innovative ways to directly stroke these obstacles, theoretically or practically. This review focuses more on the progress and obstacles from chimeric antigen receptor-engineered T cells therapy to treat liver cancer, summarizing new breakthroughs in shooting those obstacles, meanwhile, hoping to provide enlightenment to this promising immunotherapeutic method.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Engenharia Genética/métodos , Humanos , Neoplasias Hepáticas/imunologia , Camundongos , Proteínas Recombinantes de Fusão/genética
12.
Zhonghua Wai Ke Za Zhi ; 54(2): 148-52, 2016 Feb 01.
Artigo em Zh | MEDLINE | ID: mdl-26876084

RESUMO

The surgical treatment of hepatocellular carcinoma have advanced greatly in recent years: associating liver partition and portal vein ligation for staged hepatectomy can bring hope and relief to patients with advanced liver cancer and less future liver remnant; the application range of laparoscopic hepatectomy and robotic hepatectomy were amplified; hepatectomy following anatomic or non-anatomic direction should be decided by particular situations; the precise preoperative assessment of liver reserve function ensured the success of extended hepatectomy; the further discussion of United Network for Organ Sharing criteria for liver transplantation made the appearance of University of California at San Francisco, Up-to-seven and Hangzhou criteria; bridge therapy can decrease tumor progression and the dropout rate from the liver transplantation waiting list; downstaging treatment is used in selected patients with more advanced liver cancer who are beyond the accepted transplant criteria to acquire the chance of liver transplantation and increase survival rates.


Assuntos
Carcinoma Hepatocelular/cirurgia , Hepatectomia , Neoplasias Hepáticas/cirurgia , Humanos , Ligadura , Transplante de Fígado , Veia Porta/cirurgia , Taxa de Sobrevida , Resultado do Tratamento
13.
Int J Mol Sci ; 15(4): 6925-40, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24758933

RESUMO

Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1ß-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-кB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1ß before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1ß were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-кB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1ß-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1ß-induced reduction in cell viability. Stimulation of chondrocytes with IL-1ß caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-кB activation associated with the synthesis of IL-1ß and TNFα. These IL-1ß-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-кB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-кB translocation. These data suggested that resveratrol prevented IL-1ß-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-кB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.


Assuntos
Condrócitos/metabolismo , Interleucina-1beta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Idoso , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pessoa de Meia-Idade , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Resveratrol , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Heliyon ; 10(1): e23702, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187217

RESUMO

Background: Massive hemoptysis during pregnancy is very rare. Dieulafoy's disease is one of the causes of massive hemoptysis. There are few reports of ECMO use to treat massive hemoptysis during pregnancy. Findings: We report for the first time a patient with Dieulafoy's disease diagnosed at 29 weeks of pregnancy. The patient's hemoptysis occurred rapidly with large volumes. The bleeding amount reached 500 ml within half an hour, with the development of asphyxia and respiratory and cardiac arrest due to a blood clot blocking the airway. After successful cardiopulmonary resuscitation, the ventilator could not maintain effective ventilation. Emergency establishment of VV-ECMO was performed to maintain oxygen, and hemostasis was successfully achieved by performing bronchial artery embolization twice. We successfully cleaned blood clots in the airway four times by freezing and using a foreign body retrieval basket with an electronic bronchoscope. At the same time, small and smooth nodular lesions were found under bronchoscopy, and blood vessels with a diameter of 1.5 mm were found under Doppler mode with an ultrasonic bronchoscope, which was consistent with a diagnosis of Dieulafoy's disease. VV-ECMO was successfully stopped on the 3rd day of the disease course, tracheal intubation was successfully removed on the 5th day of the disease course, and the patient was discharged with no complications on the 16th day of the disease course.

15.
Expert Rev Clin Immunol ; : 1-14, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38690749

RESUMO

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED: This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION: Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.

16.
Anal Methods ; 16(8): 1281-1287, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38327233

RESUMO

MiRNAs are critical regulators of target gene expression in many biological processes and are considered promising biomarkers for diseases. In this study, we developed a simple, specific, and sensitive miRNA detection method based on proximity ligation reaction, which is easy to operate. The method uses a pair of target-specific DNA probes immobilized on the same gold nanoparticles (AuNPs), which hybridize to the target miRNA. Hybridization brings the probes close together, allowing the formation of a continuous DNA sequence that can be amplified by Quantitative Real-time PCR (qPCR). This method eliminates the need for complex reverse transcription design and achieves high specificity for discriminating single base mismatches between miRNAs through a simple procedure. This method can sensitively measure three different miRNAs with a detection limit of 20 aM, providing high versatility and sensitivity, even distinguishing single-base variations among members of the miR-200 family with high selectivity. Due to its high selectivity and sensitivity, this method has important implications for the investigation of miRNA biological functions and related biomedical research.


Assuntos
Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , Ouro , Ácidos Nucleicos Imobilizados , Limite de Detecção
17.
Biomimetics (Basel) ; 9(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534868

RESUMO

Insects produce a variety of highly acrobatic maneuvers in flight owing to their ability to achieve various wing-stroke trajectories. Among them, beetles can quickly change their flight velocities and make agile turns. In this work, we report a newly discovered phasic wing-tip-folding phenomenon and its aerodynamic basis in beetles. The wings' flapping trajectories and aerodynamic forces of the tethered flying beetles were recorded simultaneously via motion capture cameras and a force sensor, respectively. The results verified that phasic active spanwise-folding and deployment (PASFD) can exist during flapping flight. The folding of the wing-tips of beetles significantly decreased aerodynamic forces without any changes in flapping frequency. Specifically, compared with no-folding-and-deployment wings, the lift and forward thrust generated by bilateral-folding-and-deployment wings reduced by 52.2% and 63.0%, respectively. Moreover, unilateral-folding-and-deployment flapping flight was found, which produced a lateral force (8.65 mN). Therefore, a micro-flapping-wing mechanism with PASFD was then designed, fabricated, and tested in a motion capture and force measurement system to validate its phasic folding functions and aerodynamic performance under different operating frequencies. The results successfully demonstrated a significant decrease in flight forces. This work provides valuable insights for the development of flapping-wing micro-air-vehicles with high maneuverability.

18.
Bioresour Technol ; 399: 130524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492652

RESUMO

In this study, the effect of hydrothermal carbonation (HTC) on the pyrolysis behavior and the distribution of nutrients and metal species of waste-activated sludge (WAS) was investigated. Results showed that the pyrolysis activation energy range of WAS decreased from 11 to 57 kJ/mol to 10-36 kJ/mol when the hydrothermal carbonization was at 160 °C. As indicated by thermodynamic parameters, the hydrothermal carbonization process reduces the pyrolysis reaction activity of the hydrochar. The results of the chemical analysis indicate that hydrothermal carbonization significantly enhances the release of phosphorus and nitrogen, with maximum recovery at a temperature of 200 °C. The standard measurement and testing protocol revealed that hydrothermal carbonization increased the content of non-apatite inorganic P fraction in hydrochar and enhanced the availability of P. Heavy metal analysis shows that hydrothermal carbonization can strengthen the stability of heavy metals in WAS.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Pirólise , Temperatura , Nutrientes , Carbono/química
19.
J Exp Clin Cancer Res ; 43(1): 59, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413999

RESUMO

BACKGROUND: Hematological metastasis has been recognized as a crucial factor contributing to the high rates of metastasis and mortality observed in colorectal cancer (CRC). Notably, exosomes derived from cancer cells participate in the formation of CRC pre-metastatic niches; however, the mechanisms underlying their effects are largely unknown. While our preliminary research revealed the role of exosome-derived disintegrin and metalloproteinase 17 (ADAM17) in the early stages of CRC metastasis, the role of exosomal ADAM17 in CRC hematogenous metastasis remains unclear. METHODS: In the present study, we isolated and purified exosomes using ultracentrifugation and identified exosomal proteins through quantitative mass spectrometry. In vitro, co-culture assays were conducted to evaluate the impact of exosomal ADAM17 on the permeability of the blood vessel endothelium. Vascular endothelial cell resistance, the cell index, membrane protein separation, flow cytometry, and immunofluorescence were employed to investigate the mechanisms underlying exosomal ADAM17-induced vascular permeability. Additionally, a mouse model was established to elucidate the role of exosomal ADAM17 in the modulation of blood vessel permeability and pre-metastatic niche formation in vivo. RESULTS: Our clinical data indicated that ADAM17 derived from the circulating exosomes of patients with CRC could serve as a blood-based biomarker for predicting metastasis. The CRC-derived exosomal ADAM17 targeted vascular endothelial cells, thus enhancing vascular permeability by influencing vascular endothelial cadherin cell membrane localization. Moreover, exosomal ADAM17 mediated the formation of a pre-metastatic niche in nude mice by inducing vascular leakage, thereby promoting CRC metastasis. Nonetheless, ADAM17 selective inhibitors effectively reduced CRC metastasis in vivo. CONCLUSIONS: Our results suggest that exosomal ADAM17 plays a pivotal role in the hematogenous metastasis of CRC. Thus, this protein may serve as a valuable blood-based biomarker and potential drug target for CRC metastasis intervention.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Permeabilidade Capilar , Camundongos Nus , Biomarcadores/metabolismo , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína ADAM17/metabolismo
20.
Sci Adv ; 10(6): eadk1827, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324679

RESUMO

Radiotherapy is hypothesized to have an immune-modulating effect on the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) to sensitize it to anti-PD-1 antibody (a-PD-1) treatment. We collected paired pre- and posttreatment specimens from a clinical trial evaluating combination treatment with GVAX vaccine, a-PD-1, and stereotactic body radiation (SBRT) following chemotherapy for locally advanced PDACs (LAPC). With resected PDACs following different neoadjuvant therapies as comparisons, effector cells in PDACs were found to skew toward a more exhausted status in LAPCs following chemotherapy. The combination of GVAX/a-PD-1/SBRT drives TME to favor antitumor immune response including increased densities of GZMB+CD8+ T cells, TH1, and TH17, which are associated with longer survival, however increases immunosuppressive M2-like tumor-associated macrophages (TAMs). Adding SBRT to GVAX/a-PD-1 shortens the distances from PD-1+CD8+ T cells to tumor cells and to PD-L1+ myeloid cells, which portends prolonged survival. These findings have guided the design of next radioimmunotherapy studies by targeting M2-like TAM in PDACs.


Assuntos
Terapia Neoadjuvante , Neoplasias Pancreáticas , Humanos , Linfócitos T CD8-Positivos/patologia , Radioimunoterapia , Receptor de Morte Celular Programada 1 , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA