Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 24(15): 4618-4624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588453

RESUMO

Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.

2.
Angew Chem Int Ed Engl ; 63(15): e202320137, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38362792

RESUMO

Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.

3.
J Am Chem Soc ; 145(32): 17786-17794, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37537964

RESUMO

Ion transport through nanoconfinement, driven by both electrical and mechanical forces, has drawn ever-increasing attention, due to its high similarity to stress-sensitive ion channels in biological systems. Previous studies have reported only pressure-induced enhancement in ion conductance in low-permeable systems such as nanotubes, nanoslits, or single nanopores. This enhancement is generally explained by the ion accumulation caused by the capacitive effect in low-permeable systems. Here, we fabricate a highly permeable COF monolayer membrane to investigate ion transport behavior driven by both electrical and mechanical forces. Our results show an anomalous conductance reduction activated by external mechanical force, which is contrary to the capacitive effect-dominated conductance enhancement observed in low-permeable nanopores or channels. Through simulations, we uncovered a distinct electrical-mechanical interplay mechanism that depends on the relative rate between the ion diffusion from the boundary layer to the membrane surface and the ion transport through the membrane. The high pore density of the COF monolayer membrane reduces the charge accumulation caused by the capacitive effect, resulting in fewer accumulated ions near the membrane surface. Additionally, the high membrane permeability greatly accelerates the dissipation of the accumulated ions under mechanical pressure, weakening the effect of the capacitive layer on the streaming current. As a result, the ions accumulated on the electrodes, rather than in the capacitive layer, dominating the streaming current and giving rise to a distinct electrical-mechanical interplay mechanism compared to that in low-permeable nanopores or channels. Our study provides new insights into the interplay between electrical and mechanical forces in ultra-permeable systems.

4.
Pestic Biochem Physiol ; 195: 105572, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666624

RESUMO

Tefluthrin is one of widely used chiral pyrethroid pesticides. The potential enantioselective risk posed by tefluthrin to the aquatic ecosystem is still unclear. In this study, the toxicity differences and corresponding mechanism of tefluthrin on zebrafish were investigated at the enantiomeric level. The results indicated that two tefluthrin enantiomers showed different acute toxicity, developmental toxicity and oxidative stress to zebrafish. The acute toxicity of (1R,3R)-tefluthrin was 130-176 fold as that of (1S,3S)-tefluthrin on zebrafish embryos, larvae and adults. (1R,3R)-Tefluthrin presented approximately 10, 3 and 2 times inhibition effect on the deformity rate, hatching rate and spontaneous movements on embryos as that of (1S,3S)-tefluthrin. Meanwhile, (1R,3R)-tefluthrin caused stronger oxidative stress on zebrafish embryo than (1S,3S)-tefluthrin. The molecular docking results revealed that there were stereospecific binding affinities between tefluthrin enantimers and sodium channel protein (Nav1.6), which may lead to acute toxicity differences. Transcriptome analysis showed that the two tefluthrin enantiomers markedly disturbed differential embryonic genes expression, thereby potentially causing the chronic enantioselective toxicity. The findings of the study reveal the toxicity differences and potential mechanism of tefluthrin enantiomers on zebrafish. These results also provides a foundation for a systematic evaluation of tefluthrin at enantiomer level.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Simulação de Acoplamento Molecular , Ciclopropanos/toxicidade
5.
Environ Res ; 194: 110696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385383

RESUMO

The stereoselective fates of chiral pesticides in the environment has been reported in many studies. However, there is little data focused on the fate of chiral fosthiazate in the soil and aquatic ecosystems at chiral view. This study investigated the stereoselective fate of fosthiazate in the soil and aquatic ecosystems using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and liquid chromatography tandem time-of-flight mass spectrometry (LC-TOF/MS/MS). Significant stereoselective degradation among four fosthiazate stereoisomers were found in both greenhouse soil and water-sediment microcosms. In greenhouse soil, (1R,3S)-fosthiazate degraded faster than other three stereoisomers with the half-life of 2.7 d. The fosthiazate stereisomers in the seawater-sediment microcosm degraded more rapidly than in the river water-sediment microcosm. However, (1S,3R)-fosthiazate and (1S,3S)-fosthiazate possessed shorter degradation half-lives than their enantiomers in both microcosms, with the half-lives ranging from 3.4 d to 15.8 d. Ten degradation products were identified in the water-sediment microcosms, and, six of them were reported for the first time. Oxidation and hydrolysis were confirmed as the main degradation pathways of fosthiazate in the water-sediment microcosms. Our results revealed that the (1R,3S)-fosthiazate and (1R,3R)-fosthiazate may cause more serious ecotoxicity due to the longer half-lives than the other two stereoisomers in environment.


Assuntos
Solo , Água , Cromatografia Líquida , Ecossistema , Compostos Organofosforados , Espectrometria de Massas em Tandem , Tiazolidinas
6.
Chemistry ; 26(61): 13748-13753, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32428265

RESUMO

Solar energy can be harvested by biological systems to regulate the directional transport of protons and ions across cells and organelles. Structural and functional bio-mimic photo-active ion nanofluidic conductors, usually in the forms of ion channels and ion pumps, have been increasingly applied to realize active ion transport. However, progress in attaining effective light-driven active transport of ions (protons) has been constrained by the inherent limitations of membrane materials and their chemical and topological structures. Recent advances in the construction of photo-responsive physical ion pump in all-solid-state membranes could potentially lead to new classes of membrane-based materials for active ion transport. In this concept, the development of the state-of-the-art technologies for manufacturing artificial light-driven active ion transport systems are presented and discussed, which mainly involves the utilization of solar energy to realize two types of active ion transport, chemically and physically active ion transport. Afterward, we summarize the key factors towards culminating highly effective and selective membranes for active ion transport. To conclude, we highlight the promising application perspectives of this light-driven active ion transport technique in the field of energy conversion, bio-interfaces and water treatment.

7.
Chem Soc Rev ; 48(2): 488-516, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30565610

RESUMO

As a newly emerging class of porous materials, covalent organic frameworks (COFs) have attracted much attention due to their intriguing structural merits (e.g., total organic backbone, tunable porosity and predictable structure). However, the insoluble and unprocessable features of bulk COF powder limit their applications. To overcome these limitations, considerable efforts have been devoted to exploring the fabrication of COF thin films with controllable architectures, which open the door for their novel applications. In this critical review, we aim to provide the recent advances in the fabrication of COF thin films not only supported on substrates but also as free-standing nanosheets via both bottom-up and top-down strategies. The bottom-up strategy involves solvothermal synthesis, interfacial polymerization, room temperature vapor-assisted conversion, and synthesis under continuous flow conditions; whereas, the top-down strategy involves solvent-assisted exfoliation, self-exfoliation, mechanical delamination, and chemical exfoliation. In addition, the applications of COF thin films including energy storage, semiconductor devices, membrane-separation, sensors, and drug delivery are summarized. Finally, to accelerate further research, a personal perspective covering their synthetic strategies, mechanisms and applications is presented.

8.
Angew Chem Int Ed Engl ; 59(15): 6244-6248, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958197

RESUMO

Precise control of ion transport is a fundamental characteristic for the sustainability of life. It remains a great challenge to develop practical and high-performance artificial ion-transport system that can allow active transport of ions (protons) in an all solid-state nanoporous material. Herein, we develop a Janus microporous membrane by combining reduced graphene oxide (rGO) and conjugated microporous polymer (CMP) for controllable photodriven ion transport. Upon light illumination, a net ionic current is generated from the CMP to the rGO side of the membrane, indicating that the rGO/CMP Janus membrane can realize photodriven directional and anti-gradient ion transport. Analogously to the p-n junction in photovoltaic devices, light is firstly converted into separated charges to trigger a transmembrane potential, which subsequently drives directional ion movement. For the first time, this method enables integration of a photovoltaic effect with an ionic field to drive active ion transport. With the advantages of scaled up production and easy fabrication, the concept of photovoltaic ion transport based on Janus microporous membrane may find wide application in energy storage and conversion, photodriven ion-sieving, and water treatment.

9.
Analyst ; 144(17): 5193-5200, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31347617

RESUMO

Cyproconazole, a chiral triazole fungicide, has been diffusely used and analyzed. The development of an effective analytical method for cyproconazole enantiomers can support their residual monitoring and risk assessment. In the present study, the absolute configuration of the cyproconazole enantiomers was confirmed by electronic circular dichroism and time-dependent density functional theory. The enantioseparation parameters were optimized by the response surface methodology using the Box-Behnken design on Lux Cellulose-2. The elution order of (2S,3R)-(+)-, (2S,3S)-(+)-, (2R,3S)-(-)-, and (2R,3R)-(-)-cyproconazole was simulated with molecular docking. The enantiomers were completely separated primarily via halogen bond and hydrogen bond interactions with the chiral stationary phases. The mean recoveries of the cyproconazole enantiomers in the four matrices were 71.8-102.0% with intraday relative standard deviations (RSDs) of 0.3-11.9% and interday RSDs of 0.9-10.6%. The results showed the chiral recognition mechanism clearly and confirmed that the method was accurate and convenient for the simultaneous detection of cyproconazole enantiomers in environmental and food matrices.

10.
Pestic Biochem Physiol ; 160: 112-118, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519245

RESUMO

Chiral triazole fungicides have played a significant role in plant pathogen control. Although their enantiomers often exhibit different bioactivity, the mechanism of the stereoselectivity has not been well studied. The stereoselective bioactivity and mechanisms of prothioconazole and its chiral metabolite against plant pathogenic fungi were investigated. The results indicated that the metabolite exerted more fungicidal activities than the activities of the parent compound. R-Prothioconazole and R-prothioconazole-desthio were 6-262 and 19-954 times more potent against pathogenic fungi than the S-enantiomers, respectively. The R-enantiomers were more effective than in inhibiting the biosynthesis of ergosterol and deoxynivalenol the S-enantiomer. Homology modeling and molecular docking suggested that the R-enantiomers of prothioconazole and prothioconazole-desthio possessed better binding modes than S-enantiomers to CYP51B. Moreover, exposure to prothioconazole and its metabolite enantiomers significantly changed the transcription levels of the CYP51 (CYP 51A, CYP51B, CYP 51C) and Tri (Tri5, Tri6, Tri12) genes. The results showed that application of the R-prothioconazole could require a smaller application amount to eliminate the carcinogenic mycotoxins and any environmental risks.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Triazóis/farmacologia , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Estereoisomerismo , Triazóis/química
11.
J Agric Food Chem ; 72(3): 1509-1515, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190123

RESUMO

Phenylpyrazole insecticides are widely used as chiral pesticides. However, the enantioselective toxicity and potential endocrine-disrupting effects of these insecticides on aquatic organisms remain unclear. Herein, the enantioselective toxicity and potential endocrine-disrupting effects of flufiprole and ethiprole were investigated by using zebrafish embryos/larvae as a model. The acute toxicity of R-flufiprole and R-ethiprole toward zebrafish embryos and larvae was 1.8-3.1-fold higher than that of the S-configuration. Additionally, R-flufiprole and R-ethiprole had a greater effect on the expression of genes related to the hypothalamus-pituitary-gonad axis in zebrafish compared with the S-configuration. Nevertheless, both S-flufiprole and S-ethiprole exhibited a greater interference effect on the expression of genes related to the hypothalamus-pituitary-thyroid axis and a greater teratogenic effect on zebrafish than the R-configuration. Thus, this study demonstrates that both flufiprole and ethiprole exhibit enantioselective acute toxicity and developmental toxicity toward zebrafish. Furthermore, those pesticides potentially possess enantioselective endocrine-disrupting effects.


Assuntos
Inseticidas , Praguicidas , Pirazóis , Poluentes Químicos da Água , Animais , Inseticidas/metabolismo , Peixe-Zebra/metabolismo , Estereoisomerismo , Praguicidas/metabolismo , Larva , Poluentes Químicos da Água/metabolismo
12.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951732

RESUMO

Separating xylene isomers is a challenging task due to their similar physical and chemical properties. In this study, we developed a molecular sieve incorporating a reduced graphene oxide (rGO) membrane for the precise differentiation of xylene isomers. We fabricated GO membranes using a vacuum filtration technique followed by thermal-induced reduction to produce rGO membranes with precisely controllable interlayer spacing. Notably, we could finely tune the interlayer spacing of the rGO membrane from 8.0 to 5.0 Å by simply varying the thermal reduction temperature. We investigated the reverse osmosis separation ability of the rGO membranes for xylene isomers and found that the rGO membrane with an interlayer spacing of 6.1 Å showed a high single component permeance of 0.17 and 0.04 L m-2 h-1 bar-1 for para- and ortho-xylene, respectively, exhibiting clear permselectivity. The separation factor reached 3.4 and 2.8 when 90:10 and 50:50 feed mixtures were used, respectively, with permeance 1 order of magnitude higher than that of current state-of-the-art reverse osmosis membranes. Additionally, the membrane showed negligible permeance and selectivity decay even after continuous operation for more than 5 days, suggesting commendable membrane resistance to solvent swelling and operating pressure.

13.
Chemphyschem ; 13(18): 4110-5, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23129127

RESUMO

A hexagonal network structure fabricated by self-assembly of a branched conjugated polymer with a porphyrin core and P3HT or P3HS arms is presented (see picture). Polymer symmetry is very important to the network structure formation probably due to the different viscosities in linear and branched polymers.

14.
ACS Nano ; 16(9): 13294-13300, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969205

RESUMO

Distinct from the conventional view that nanopores are considered independent channels for mass transport, recent study on the covalent organic framework (COF)-based monolayers characteristic of an ordered nanopore array exhibits a series of interesting properties originating from the strong interactions between adjacent pores. These interactions are determined to be highly dependent on interpore distance and pose a significant influence on the ion transport, accounting for the exceptional membrane performance including both selectivity and conductance. In this Perspective, we discuss the recently discovered nanoscale pore-pore coupling as well as the exciting features of porous nanostructures. We also look at the challenges and future opportunities of ion transport in ordered porous monolayers in the aspects of both fundamental research and practical use.

15.
Sci Rep ; 12(1): 5879, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393502

RESUMO

Human activities such as urbanization often has negative affects wildlife. However, urbanization can also be beneficial to some animals by providing suitable microhabitats. To test the impact of urbanization on cold-blooded animals, we first conducted a snake survey at a national nature reserve (Xianghai natural reserve) and an adjacent tourist bird park (Red-crowned Crane Park). We show high presence of Elaphe dione in the tourist park even with high human activities and predator population (the endangered, red-crowned crane, Grus japonensis). We then radio-tracked 20 individuals of E. dione, set seven camera traps, and recorded the temperature of the snakes and artificial structures in Crane Park to document their space use, activity, and thermal preference, respectively. Our results show E. dione preferred to use artificial facilities to shelter from their predators and for thermoregulation. The high number of rats from the camera traps indicate abundant prey items. Overall, E. dione appears to be adapted to modified habitats and may expand population size at the current study site.


Assuntos
Aves , Ecossistema , Animais , Animais Selvagens , Aves/fisiologia , Atividades Humanas , Ratos
16.
ACS Nano ; 16(10): 17149-17156, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36165566

RESUMO

Low membrane conductivity originated from a high membrane thickness has long been the "Achilles heel" of the conventional polymeric membrane, greatly hampering the improvement of the output power density in osmotic power generation. Herein, we demonstrate a molecularly-thin two-dimensional (2D) covalent organic framework (COF) monolayer membrane, featured with ultimate thickness, high pore density, and tight pore size distribution, which performs as a highly efficient osmotic power generator. Despite the large pore size up to 3.8 nm and relatively low surface charge density of 2.2 mC m-2, the monolayer COF membrane exhibits a high osmotic current density of 16.7 kA m-2 and an output power density of 102 W m-2 under 50 times the NaCl salinity gradient (0.5 M/0.01 M). This superior power density could be further improved to 170 W m-2 in the real seawater/river water gradient system. When the large pore size and low surface charge density are considered, this superior performance is not expected. Computational studies further reveal that the ultimate membrane permeability originated from the high membrane porosity, rather than ion selectivity, plays a dominant role in the production of high current density, especially under high salinity. This work provides an alternative strategy to realize improved output power density in ultrapermeable membranes.

17.
Nat Nanotechnol ; 17(6): 622-628, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469012

RESUMO

Osmotic power, also known as 'blue energy', is produced by mixing solutions of different salt concentrations, and represents a vast, sustainable and clean energy source. The efficiency of harvesting osmotic power is primarily determined by the transmembrane performance, which is in turn dependent on ion conductivity and selectivity towards positive or negative ions. Atomically or molecularly thin membranes with a uniform pore environment and high pore density are expected to possess an outstanding ion permeability and selectivity, but remain unexplored. Here we demonstrate that covalent organic framework monolayer membranes that feature a well-ordered pore arrangement can achieve an extremely low membrane resistivity and ultrahigh ion conductivity. When used as osmotic power generators, these membranes produce an unprecedented output power density over 200 W m-2 on mixing the artificial seawater and river water. This work opens up the application of porous monolayer membranes with an atomically precise structure in osmotic power generation.

18.
Angew Chem Int Ed Engl ; 50(35): 8148-52, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21748833

RESUMO

Two distinct morphologies of hexylselenophene-hexylthiophene rod-rod block copolymer films can be prepared depending on the molecular weight of the sample (see picture: left M(n) =12.9, right M(n) =3.9 kg mol(-1)). These polymers can be used to organize spherical CdSe nanocrystals (yellow) into either dispersed or aligned hierarchical structures. Scale bars: 200 nm.

19.
J Agric Food Chem ; 69(43): 12654-12660, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695356

RESUMO

Chiral fosthiazate enters the organisms via environmental exposure and food web enrichment. Liver subcellular fractions of rats (RLM) and cocks (CLM) were prepared to explore the stereoselective metabolism of fosthiazate in vitro. The results indicated that fosthiazate exhibited different stereoselective metabolism behaviors in RLM and CLM. The clearance rate order of RLM to four fosthiazate stereoisomers was (1R,3R)-fosthiazate > (1S,3R)-fosthiazate > (1R,3S)-fosthiazate > (1S,3S)-fosthiazate. However, CLM showed a faster clearance rate to (1S,3S)-fosthiazate and (1S,3R)-fosthiazate than the other two stereoisomers. The molecular docking results revealed that the stereoselectivity was partially due to the stereospecific binding between fosthiazate stereoisomers and cytochrome P450 proteins. The main metabolism pathways of fosthiazate in RLM and CLM were oxidation and hydrolysis with five common metabolites including M299, M243, M227, M103, and M197 being identified by LC-TOF-MS/MS. The present study provides the accurate data on risk assessment of chiral fosthiazate.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Animais , Simulação de Acoplamento Molecular , Compostos Organofosforados , Ratos , Estereoisomerismo , Tiazolidinas
20.
Chemosphere ; 272: 129618, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33465613

RESUMO

In previous articles, it was found that epoxiconazole enantiomers can persist for a long time in the environment, causing severe environmental damage. Herein, we investigated alterations in the soil microbial community and rat gut microbiota after six weeks of treatment with rac-epoxiconazole or one of its enantiomers. The selected concentrations were 1, 2, and 6 times greater than the maximum residue limits (MRLs). The rat gut microbiota relative abundance in the feces significantly changed following exposure to rac-epoxiconazole or one of its enantiomers. At the phylum level, in the R,S-, S,R-epoxiconazole, and rac-treated groups, Firmicutes presented the greatest decrease in abundance; however, Spirochaetes presented the greatest increase in abundance in the rac- and S,R-epoxiconazole-treated groups. In response to R,S-epoxiconazole, Epsilonbacteraeota presented the greatest increase in abundance. In soil samples treated with epoxiconazole, the relative abundance of the soil bacterial community also changed. Proteobacteria presented the greatest decrease in abundance in the S,R- and rac-treated samples. However, Firmicutes presented the greatest increase in abundance. In the R,S-treated soil samples, the situation was the opposite. In general, prolonged exposure to epoxiconazole at high concentrations could initiate noticeable alterations in rat gut microbiota and soil microbial diversity. R,S-epoxiconazole had improved bioactivity and less toxic effects at relatively low concentrations. Therefore, we recommend using R,S-epoxiconazole at a relatively low concentration, which is better for environmental safety.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Animais , Compostos de Epóxi/toxicidade , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Ratos , Solo , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA