Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 204(6): 2429-2441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665119

RESUMO

Primary immune thrombocytopenia (ITP) is linked to specific pathogenic mechanisms, yet its relationship with mitophagy and ferroptosis is poorly understood. This study aimed to identify new biomarkers and explore the role of mitophagy and ferroptosis in ITP pathogenesis. Techniques such as differential analysis, Mfuzz expression pattern clustering, machine learning, gene set enrichment analysis, single-cell RNA sequencing (scRNA-seq) and immune infiltration analysis were employed to investigate the molecular pathways of pivotal genes. Two-sample Mendelian randomization (TSMR) assessed the causal effects in ITP. Key genes identified in the training set included GABARAPL1, S100A8, LIN28A, and GDF9, which demonstrated diagnostic potential in validation sets. Functional analysis indicated these genes' involvement in ubiquitin phosphorylation, PPAR signalling pathway and T-cell differentiation. Immune infiltration analysis revealed increased macrophage presence in ITP, related to the critical genes. scRNA-seq indicated reduced GABARAPL1 expression in ITP bone marrow macrophages. TSMR linked S100A8 with ITP diagnosis, presenting an OR of 0.856 (95% CI = 0.736-0.997, p = 0.045). The study pinpointed four central genes, GABARAPL1, S100A8, LIN28A, and GDF9, tied to mitophagy and ferroptosis in ITP. It posits that diminished GABARAPL1 expression may disrupts ubiquitin phosphorylation and PPAR signalling, impairing mitophagy and inhibiting ferroptosis, leading to immune imbalance.


Assuntos
Ferroptose , Mitofagia , Púrpura Trombocitopênica Idiopática , Humanos , Ferroptose/genética , Púrpura Trombocitopênica Idiopática/genética , Masculino , Feminino , Biomarcadores , Pessoa de Meia-Idade
2.
Br J Haematol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189039

RESUMO

Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.

3.
Oncol Res ; 32(6): 1109-1118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827326

RESUMO

Background: Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods: We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results: Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion: In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.


Assuntos
Antígenos CD19 , Ciclofosfamida , Neoplasias Hematológicas , Imunoterapia Adotiva , Vidarabina , Animais , Humanos , Camundongos , Antígenos CD19/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Ciclofosfamida/uso terapêutico , Ciclofosfamida/farmacologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/tratamento farmacológico , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 12: 1072806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561525

RESUMO

Incidence rates of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) are lower but more aggressive in children than in adults due to different biological and host factors. After the clinical application of tyrosine kinase inhibitor (TKI) blocking BCR/ABL kinase activity, the prognosis of children with CML and Ph+ ALL has improved dramatically. Yet, off-target effects and drug tolerance will occur during the TKI treatments, contributing to treatment failure. In addition, compared to adults, children may need a longer course of TKIs therapy, causing detrimental effects on growth and development. In recent years, accumulating evidence indicates that drug resistance and side effects during TKI treatment may result from the cellular metabolism alterations. In this review, we provide a detailed summary of the current knowledge on alterations in metabolic pathways including glucose metabolism, lipid metabolism, amino acid metabolism, and other metabolic processes. In order to obtain better TKI treatment outcomes and avoid side effects, it is essential to understand how the TKIs affect cellular metabolism. Hence, we also discuss the relevance of cellular metabolism in TKIs therapy to provide ideas for better use of TKIs in clinical practice.

5.
Zhonghua Xue Ye Xue Za Zhi ; 35(10): 931-5, 2014 Oct.
Artigo em Zh | MEDLINE | ID: mdl-25339333

RESUMO

OBJECTIVE: To investigate the effect and mechanism of high dose Vitamin B3 on granulopoiesis in normal rat. METHODS: Twenty one healthy SD rats were randomly divided into three groups: the Vitamin B3 group (Vit B3 500 mg·kg⁻¹·d⁻¹, × 7 d), the rhG-CSF group (rhG-CSF 25 µg·kg⁻¹·d⁻¹, × 7 d) and the normal saline group (2 ml/d, × 7 d). The peripheral blood cell counts were analyzed by automatic blood cell counter before (day 0) treatment, the third day (day 3) and the seventh day (day 7) after administration of drugs, respectively. The concentration of serum nicotinamide adenine dinucleotide (NAD⁺) level was measured by enzymatic cycling assay before and after drugs treatment. The expressions of G-CSF, G-CSFR, SIRT1, C/EBPα, C/EBPß, C/EBPε and NAMPT mRNA were detected by reverse transcription real-time fluorescent quantitative PCR. RESULTS: The neutrophil counts increased significantly after 7 days of Vitamin B3 and rhG-CSF treatment compared with that of control group [(1.64 ± 0.19) × 109/L, (1.88 ± 0.37)× 109/L vs (0.86 ± 0.18) × 109/L, P<0.01]; the level of serum NAD⁺ increased significantly [(0.96 ± 0.08) nmol/L, (0.65 ± 0.12) nmol/L vs (0.36 ± 0.15) nmol/L, P<0.01]; the expression of G-CSF, G-CSFR, SIRT1, C/EBPα, C/EBPε and NAMPT mRNA in bone marrow mononuclear cells were increased significantly compared with that of control group (P<0.01). CONCLUSION: High dose of Vitamin B3 may play an important role in increasing absolute neutrophil count in healthy rat under steady state, and the mechanism may be dependent on NAMPT-NAD⁺-SIRT1 signaling pathways.


Assuntos
Neutrófilos/efeitos dos fármacos , Niacinamida/farmacologia , Animais , Células da Medula Óssea , Fator Estimulador de Colônias de Granulócitos , Contagem de Leucócitos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA