RESUMO
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Assuntos
Malus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Malus/genética , Malus/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismoRESUMO
Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol transporters (SOTs) play a vital role in facilitating sorbitol allocation from source to sink organs and sugar accumulation in sink organs. While prior research has addressed gene duplications within the SOT gene family in Rosaceae, the precise origin and evolutionary dynamics of these duplications remain unclear, largely due to the complicated interplay of whole genome duplications and tandem duplications. Here, we investigated the synteny relationships among all identified Polyol/Monosaccharide Transporter (PLT) genes in 61 angiosperm genomes and SOT genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of PLTs and SOTs across diverse plant lineages. We found that Rosaceae SOTs, as PLT family members, originated from a pair of tandemly duplicated PLT genes within Class III-A. Furthermore, our investigation highlights the role of lineage-specific and synergistic duplications in Amygdaloideae in contributing to the expansion of SOTs in Rosaceae plants. Collectively, our findings provide insights into the genomic origins, duplication events, and subsequent divergence of SOT gene family members. Such insights lay a crucial foundation for comprehensive functional characterizations in future studies.
Assuntos
Magnoliopsida , Rosaceae , Rosaceae/genética , Filogenia , Magnoliopsida/genética , Genoma de Planta/genética , Sorbitol , Evolução Molecular , Duplicação GênicaRESUMO
Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.
Assuntos
Temperatura Baixa , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Metabolismo dos Carboidratos/genéticaRESUMO
Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.
Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malatos , Malus , Proteínas de Plantas , Fatores de Transcrição , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Plantas Geneticamente Modificadas , Genes de PlantasRESUMO
Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.
Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase , Malatos , Malus , Proteínas de Plantas , Regiões Promotoras Genéticas , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Mutagênese Insercional/genética , Plantas Geneticamente Modificadas , Genes de PlantasRESUMO
In fleshy fruit, sugars and acids are central components of fruit flavor and quality. To date, the mechanisms underlying transcriptional regulation of sugar and acid during fruit development remain largely unknown. Here, we combined ATAC-seq with RNA-seq to investigate the genome-wide chromatin accessibility and to identify putative transcription factors related to sugar and acid accumulation during apple (Malus domestica) fruit development. By integrating the differentially accessible regions and differentially expressed genes, we generated a global data set of promoter-accessibility and expression-increased genes. Using this strategy, we constructed a transcriptional regulatory network enabling screening for key transcription factors and target genes involved in sugar and acid accumulation. Among these transcription factors, 5 fruit-specific DNA binding with one finger genes were selected to confirm their regulatory effects, and our results showed that they could affect sugar or acid concentration by regulating the expression of sugar or acid metabolism-related genes in apple fruits. Our transcriptional regulatory network provides a suitable platform to identify candidate genes that control sugar and acid accumulation. Meanwhile, our data set will aid in analyzing other characteristics of apple fruit that have not been illuminated previously. Overall, these findings support a better understanding of the regulatory dynamics during apple fruit development and lay a foundation for quality improvement of apple.
Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malus , Açúcares , Malus/genética , Malus/metabolismo , Malus/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Açúcares/metabolismo , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácidos/metabolismo , Metabolismo dos Carboidratos/genéticaRESUMO
Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.
Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glucose , Malus , Proteínas de Plantas , Plantas Geneticamente Modificadas , Rizosfera , Malus/genética , Malus/metabolismo , Glucose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Resistência à SecaRESUMO
The phytohormone gibberellin (GA) is a vital plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCFSLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptoms and abnormal flower development. The infection by ALCScV significantly altered the expression of GA pathway-related genes and decreased the content of endogenous GA in N. benthamiana. Furthermore, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were obtained from experiments with the C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism by which geminivirus C4 proteins control viral infection and disease symptom development by interfering with the GA signaling pathway.
Assuntos
Geminiviridae , Geminiviridae/genética , Humanos , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transdução de Sinais , UbiquitinaRESUMO
Fructokinase (FRK) activates fructose through phosphorylation, which sends the activated fructose into primary metabolism and regulates fructose signaling capabilities in plants. The apple (Malus × domestica) FRK gene MdFRK2 shows especially high affinity to fructose, and its overexpression decreases fructose levels in the leaves of young plants. However, in the current study of mature plants, fruits of transgenic apple trees overexpressing MdFRK2 accumulated a higher level of fructose than wild-type (WT) fruits (at both young and mature stages). Transgenic apple trees with high mRNA MdFRK2 expression showed no significant differences in MdFRK2 protein abundance or FRK enzyme activity compared to WT in mature leaves, young fruits, and mature fruits. Immunoprecipitation-mass spectrometry analysis identified an skp1, cullin, F-box (SCF) E3 ubiquitin ligase, calcyclin-binding protein (CacyBP), that interacted with MdFRK2. RNA-sequencing analysis provided evidence for ubiquitin-mediated post-transcriptional regulation of MdFRK2 protein for the maintenance of fructose homeostasis in mature leaves and fruits. Further analyses suggested an MdCacyBP-MdFRK2 regulatory module, in which MdCacyBP interacts with and ubiquitinates MdFRK2 to facilitate its degradation by the 26S proteasome, thus decreasing the FRK enzyme activity to elevate fructose concentration in transgenic apple trees. This result uncovered an important mechanism underlying plant fructose homeostasis in different organs through regulating the MdFRK2 protein level via ubiquitination and degradation. Our study provides usable data for the future improvement of apple flavor and expands our understanding of the molecular mechanisms underlying plant fructose content and signaling regulation.
Assuntos
Malus , Malus/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Homeostase , Frutose , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an AâT SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Genótipo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Plant roots can absorb sugars from the rhizosphere, which reduces the consumption of carbon derived from photosynthesis. However, the underlying mechanisms that roots use to control sugar absorption from soil are poorly understood. Here, we identified an apple (Malus × domestica Borkh.) hexose transporter, MdHT1.2, that functions on the root epidermis to absorb glucose (Glc) from the rhizosphere. Based on RNA-seq data, MdHT1.2 showed the highest expression level among 29 MdHT genes in apple roots. Biochemical analyses demonstrated that MdHT1.2 was mainly expressed in the epidermal cells of fine roots, and its protein was located on the plasma membrane. The roots of transgenic apple and Solanum lycopersicum lines overexpressing MdHT1.2 had an increased capability to absorb Glc when fed with [13C]-labeled Glc or 2-NBDG, whereas silencing MdHT1.2 in apple showed the opposite results. Further studies established that MdHT1.2-mediated Glc absorption from the rhizosphere changed the carbon assimilate allocation between apple shoot and root, which regulated plant growth. Additionally, a grafting experiment in tomato confirmed that increasing the Glc uptake capacity in the root overexpressing MdHT1.2 could facilitate carbohydrate partitioning to the fruit. Collectively, our study demonstrated that MdHT1.2 functions on the root epidermis to absorb rhizospheric Glc, which regulates the carbohydrate allocation for plant growth and fruit sugar accumulation.
Assuntos
Malus , Malus/metabolismo , Glucose/metabolismo , Rizosfera , Açúcares/metabolismo , Carbono/metabolismo , Raízes de Plantas/metabolismoRESUMO
Artificial photoelectrochemistry (PEC) has emerged as a promising and efficient technology for the sustainable conversion of solar energy into chemicals. In this study, we present a refined PEC process that enables the highly selective and stable production of piperonal and other valuable aldehydes through the oxidation of the corresponding alcohols. By employing Fe2O3 or TiO2 as the photoanode material and 2,2,6,6-tetramethylpiperidinooxy (TEMPO) as a redox mediator in an H2O/acetonitrile solution, we achieve 100% selectivity and a >95% Faradaic efficiency for piperonal production from piperonyl alcohol (PA) oxidation. Remarkably, we reveal the enhancing effect on the PA oxidation reactivity of appropriate-amount water in the solvent as it plays a crucial role in inhibiting the photoelectron-hole recombination efficiency and facilitating charge transfer. Mechanistic analysis suggests that TEMPO-mediated PA oxidation involves the formation of â¢O2- radicals by the reduction of oxygen on the cathode, resulting in water as the sole byproduct. Furthermore, our PEC oxidation system exhibits applications on the 100%-selective production of various conjugated aldehydes, including 4-anisaldehyde, cuminaldehyde, and the vitamin B6 derivative. By implementing a TiO2//Fe2O3 dual-photoanode system, we achieve an enhanced piperonal production rate of 31.2 µmol h-1 cm-2 at 1.0 V vs Ag/Ag+ and demonstrate its stability over a 102 h cyclic test, ensuring near-quantitative yield. This research illuminates the potential of the PEC strategy as a generally applicable method for the efficient production of high-value aldehydes.
RESUMO
PER: Polyfluoroalkyl substances (PFASs), typical persistent organic pollutants detected in various water environments, have attracted widespread attention due to their undesirable effects on ecology and human health. Constructed wetlands (CWs) have emerged as a promising, cost-effective, and nature-based solution for removing persistent organic pollutants. This review summarizes the removal performance of PFASs in CWs, underlying PFASs removal mechanisms, and influencing factors are also discussed comprehensively. Furthermore, the environmental risks of PFASs-enriched plants and substrates in CWs are analyzed. The results show that removal efficiencies of total PFASs in various CWs ranged from 21.3% to 98%. Plant uptake, substrate absorption and biotransformation are critical pathways in CWs for removing PFASs, which can be influenced by the physiochemical properties of PFASs, operation parameters, environmental factors, and other pollutants. Increasing dissolved oxygen supply and replacing traditional substrates in CWs, and combining CWs with other technologies could significantly improve PFASs removal. Further, CWs pose relatively lower ecological and environmental risks in removing PFASs, which indicates CWs could be an alternative solution for controlling PFASs in aquatic environments.
RESUMO
Dioscorea opposita cultivar Tiegun is an economically important crop with high nutritional and medicinal value. Plants can activate complex and diverse defense mechanisms after infection by pathogenic fungi. Moreover, endophytic fungi can also trigger the plant immune system to resist pathogen invasion. However, the study of the effects of endophytic fungi on plant infection lags far behind that of pathogenic fungi, and the underlying mechanism is not fully understood. Here, the black spot pathogen Alternaria alternata and the endophytic fungus Penicillium halotolerans of Tiegun were identified and used to infect calli. The results showed that A. alternata could cause more severe membrane lipid peroxidation, whereas P. halotolerans could rapidly increase the activity of the plant antioxidant enzymes superoxide dismutase, peroxidase, and catalase; thus, the degree of damage to the callus caused by P. halotolerans was weaker than that caused by A. alternata. RNA sequencing analysis revealed that various plant defense pathways, such as phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase signaling pathway, play important roles in triggering the plant immune response during fungal infection. Furthermore, the tryptophan metabolism, betalain biosynthesis, fatty acid degradation, flavonoid biosynthesis, tyrosine metabolism, and isoquinoline alkaloid biosynthesis pathways may accelerate the infection of pathogenic fungi, and the ribosome biogenesis pathway in eukaryotes may retard the damage caused by endophytic fungi. This study lays a foundation for exploring the infection mechanism of yam pathogens and endophytic fungi and provides insight for effective fungal disease control in agriculture.
Assuntos
Alternaria , Dioscorea , Endófitos , Doenças das Plantas , Dioscorea/microbiologia , Dioscorea/genética , Alternaria/fisiologia , Alternaria/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endófitos/fisiologia , Endófitos/genética , Penicillium/genética , Penicillium/fisiologia , Penicillium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , TranscriptomaRESUMO
Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1 Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1-overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.
Assuntos
Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Vacúolos/metabolismo , Citosol/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Técnicas de Inativação de Genes , Inativação Gênica , Glucose/metabolismo , Solanum lycopersicum/genética , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA-Seq , Sacarose/metabolismo , Regulação para CimaRESUMO
The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.
Assuntos
Cádmio , Microbioma Gastrointestinal , Caramujos , Animais , Cádmio/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , RNA Ribossômico 16S , Morus , Folhas de PlantaRESUMO
Common lambsquarters (Chenopodium album Linn.) is one of the most problematic weeds associated with crops worldwide due to its fast-growing, high fecundity, and wide tolerance to various conditions. Meanwhile, C. album is also an herbaceous vegetable plant, and the leaves and young shoots of this plant are considered nutritious in the human diet (Aman et al. 2016). In September 2023, C. album plants exhibiting yellowing, stunted growth, and extensive galled root symptoms were collected from a yam field in Fengqiu (34°54'24"N; 114°34'57"E), Henan Province, China. At the selected sampling site, we randomly selected 100 C. album plants, and the disease incidence was 73% on a 0.67-ha field. A RKN species belonging to the genus Meloidogyne was found, comprising an average of 550 second-stage juveniles (J2s) from 100 g of the 10 to 30 cm soil layer. The J2s were isolated from fresh soil with a Baermann funnel. C. album roots were thoroughly washed with tap water and dissected. Nematodes at different stages were collected and morphologically identified. Females and egg masses were obtained by dissecting galls. Females were white with a protruding neck, globular to pear-shaped. The perineal patterns of females predominantly exhibited a pronounced dorsal arch, characterized by either a square or trapezoid shape, lacking obvious lateral lines. Males isolated from root galls were vermiform, annulated, and showed a trapezoidal labial region, including a high head cap that was concaved at the center of the top end in lateral view. J2s were distinguished by the conspicuous, round stylet knobs, and they had wrinkled tails with a hyaline region and an obtuse tip. Morphological measurements are described in the supplementary material. All features were consistent with the morphological characteristics of Meloidogyne incognita (Eisenback and Hirschmann 1981). Identification was accomplished with subsequent species-specific PCR and sequencing analysis. The genomic DNA of 10 individual females was extracted, and the molecular identification was carried out with M. incognita-specific primers Mi-F/Mi-R, and Inc-K14-F/Inc-K14-R (Meng et al. 2004; Randig et al. 2002). PCR amplification generated 955 and 399 bp fragments for the analyzed samples, respectively, and the amplicons were confirmed by sequence analyses. The sequences were deposited in GenBank under accession number PP836070 and PP836071. BLASTn searches showed 100% identity with available GenBank M. incognita sequences (accession no. MK410954, OQ427638). To verify reproduction on C. album, 10 healthy plants (30 days old) grown in pots with sterilized soil were inoculated with 1,000 M. incognita J2s under greenhouse conditions (light/dark: 16 h/8 h, temperature: 25-28°C). Five uninoculated plants were used as negative control. Two months after inoculation, stunted growth and root-galling symptoms were observed similar to those in field, whereas control plants remained symptomless. Many root galls and egg masses were observed in all inoculated plants. The root galling index (scale of 0 to 10; Poudyal et al. 2005) was ~7 and nematode reproduction factor (final population density/initial population density) was 5.3. The morphological features of the nematodes reisolated from root tissue closely match the description of M. incognita, fulfilling Koch's postulates. The pathogenicity test was carried out twice with similar results. M. incognita is an emerging disease of economic importance in many crop plants worldwide, and may cause serious economic losses (Phani et al. 2021). This widely distributed C. album plant is likely a reservoir for the pathogen and serves as an alternate host for nematodes. The findings are significant for the integrated management practices of RKNs, particularly for crops that are infested with C. album. To our knowledge, this is the first report of the nematode parasitizing C. album in China. The development of effective short- and long-term control procedures is urgently needed for managing M. incognita.
RESUMO
Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and how endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cultivar Tiegun. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16 to 40 cm than those at a depth of 0 to 15 and 41 to 70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial α-diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.
Assuntos
Dioscorea , Microbiota , Doenças das Plantas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Simbiose , Tylenchoidea , Animais , Dioscorea/microbiologia , Dioscorea/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Tylenchoidea/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nematoides/fisiologia , Nematoides/microbiologiaRESUMO
Importance: For patients with non-small cell lung cancer whose disease progressed while receiving EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy, particularly third-generation TKIs, optimal treatment options remain limited. Objective: To compare the efficacy of ivonescimab plus chemotherapy with chemotherapy alone for patients with relapsed advanced or metastatic non-small cell lung cancer with the epidermal growth factor receptor (EGFR) variant. Design, Setting, and Participants: Double-blind, placebo-controlled, randomized, phase 3 trial at 55 sites in China enrolled participants from January 2022 to November 2022; a total of 322 eligible patients were enrolled. Interventions: Participants received ivonescimab (n = 161) or placebo (n = 161) plus pemetrexed and carboplatin once every 3 weeks for 4 cycles, followed by maintenance therapy of ivonescimab plus pemetrexed or placebo plus pemetrexed. Main Outcomes and Measures: The primary end point was progression-free survival in the intention-to-treat population assessed by an independent radiographic review committee (IRRC) per Response Evaluation Criteria in Solid Tumors version 1.1. The results of the first planned interim analysis are reported. Results: Among 322 enrolled patients in the ivonescimab and placebo groups, the median age was 59.6 vs 59.4 years and 52.2% vs 50.9% of patients were female. As of March 10, 2023, median follow-up time was 7.89 months. Median progression-free survival was 7.1 (95% CI, 5.9-8.7) months in the ivonescimab group vs 4.8 (95% CI, 4.2-5.6) months for placebo (difference, 2.3 months; hazard ratio [HR], 0.46 [95% CI, 0.34-0.62]; P < .001). The prespecified subgroup analysis showed progression-free survival benefit favoring patients receiving ivonescimab over placebo across almost all subgroups, including patients whose disease progressed while receiving third-generation EGFR-TKI therapy (HR, 0.48 [95% CI 0.35-0.66]) and those with brain metastases (HR, 0.40 [95% CI, 0.22-0.73]). The objective response rate was 50.6% (95% CI, 42.6%-58.6%) with ivonescimab and 35.4% (95% CI, 28.0%-43.3%) with placebo (difference, 15.6% [95% CI, 5.3%-26.0%]; P = .006). The median overall survival data were not mature; at data cutoff, 69 patients (21.4%) had died. Grade 3 or higher treatment-emergent adverse events occurred in 99 patients (61.5%) in the ivonescimab group vs 79 patients (49.1%) in the placebo group, the most common of which were chemotherapy-related. Grade 3 or higher immune-related adverse events occurred in 10 patients (6.2%) in the ivonescimab group vs 4 (2.5%) in the placebo group. Grade 3 or higher vascular endothelial growth factor-related adverse events occurred in 5 patients (3.1%) in the ivonescimab group vs 4 (2.5%) in the placebo group. Conclusions: Ivonescimab plus chemotherapy significantly improved progression-free survival with tolerable safety profile in TKI-treated non-small cell lung cancer. Trial Registration: ClinicalTrials.gov Identifier: NCT05184712.