Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2310785, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334181

RESUMO

Infiltration of excessive antibiotics into aquatic ecosystems plays a significant role in antibiotic resistance, a major global health challenge. It is therefore critical to develop effective technologies for their removal. Herein, defect-rich Bi2 WO6 nanoparticles are solvothermally prepared via epitaxial growth on pristine Bi2 WO6 seed nanocrystals, and the efficiency of the photocatalytic degradation of ciprofloxacin, a common antibiotic, is found to increase markedly from 62.51% to 98.27% under visible photoirradiation for 60 min. This is due to the formation of a large number of structural defects, where the synergistic interactions between grain boundaries and adjacent dislocations and oxygen vacancies lead to an improved separation and migration efficiency of photogenerated carriers and facilitate the adsorption and degradation of ciprofloxacin, as confirmed in experimental and theoretical studies. Results from this work demonstrate the unique potential of defect engineering for enhanced photocatalytic performance, a critical step in removing antibiotic contaminants in aquatic ecosystems.

2.
Langmuir ; 40(12): 6515-6523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466089

RESUMO

Photocatalysis represents an effective technology for environmental remediation. Herein, a series of Zn-doped BiOBr hollow microspheres are synthesized via one-pot solvothermal treatment of bismuth nitrate and dodecyl ammonium bromide in ethylene glycol along with a calculated amount of zinc acetate. Whereas the materials morphology and crystal structure remain virtually unchanged upon Zn-doping, the photocatalytic performance toward the degradation of ciprofloxacin is significantly improved under visible light irradiation. This is due to the formation of a unique band structure that facilitates the separation of photogenerated electron-hole pairs, reduced electron-transfer resistance, and enhanced electron mobility and carrier concentration. The best sample consists of a Zn doping amount of 1%, which leads to a 99.2% degradation rate of ciprofloxacin under visible photoirradiation for 30 min. The resulting photocatalysts also exhibit good stability and reusability, and the degradation intermediates exhibit reduced cytotoxicity compared to ciprofloxacin. These results highlight the unique potential of BiOBr-based photocatalysts for environmental remediation.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Microesferas , Luz , Bismuto/química , Ciprofloxacina , Catálise
3.
Opt Express ; 30(9): 14033-14047, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473156

RESUMO

An analytical three-dimensional (3D) coupled-wave theory (CWT) for the finite-size photonic crystal slabs (PhCs) has been presented to depict the discretized modes at band-edges residing inside and outside the continuum. Specifically, we derive the CWT equations of slow-varying envelop function of dominant Bloch waves. By combining the trial solutions that are composed of a basis of bulk states with appropriate boundary conditions (B.C.), we analytically solve the equations and discuss the far-field patterns, asymptotic behavior and flatband effect of the finite-size modes, respectively. The proposed method presents a clear picture in physics for the origins of finite-size modes and provides an efficient and comprehensive tool for designing and optimizing PhC devices such as PCSELs.

4.
J Am Chem Soc ; 142(28): 12430-12439, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530616

RESUMO

Photocatalytic nitrogen fixation represents a green alternative to the conventional Haber-Bosch process in the conversion of nitrogen to ammonia. In this study, a series of Bi5O7Br nanostructures were synthesized via a facile, low-temperature thermal treatment procedure, and their photocatalytic activity toward nitrogen fixation was evaluated and compared. Spectroscopic measurements showed that the tubular Bi5O7Br sample prepared at 40 °C (Bi5O7Br-40) exhibited the highest electron-transfer rate among the series, producing a large number of O2.- radicals and oxygen vacancies under visible-light photoirradiation and reaching a rate of photocatalytic nitrogen fixation of 12.72 mM·g-1·h-1 after 30 min of photoirradiation. The reaction dynamics was also monitored by in situ infrared measurements with a synchrotron radiation light source, where the transient difference between signals in the dark and under photoirradiation was analyzed and the reaction pathway of nitrogen fixation was identified. This was further supported by results from density functional theory calculations. The reaction energy of nitrogen fixation was quantitatively estimated and compared by building oxygen-enriched and anoxic models, where the change in the oxygen vacancy concentration was found to play a critical role in determining the nitrogen fixation performance. Results from this study suggest that Bi5O7Br with rich oxygen vacancies can be used as a high-performance photocatalyst for nitrogen fixation.

5.
Sci Adv ; 8(51): eade8817, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563161

RESUMO

The pursuit of compact lasers with low thresholds has imposed strict requirements on tight light confinements with minimized radiation losses. Bound states in the continuum (BICs) have been recently demonstrated as an effective mechanism to trap light. However, most reported BIC lasers are still bulky due to the absence of in-plane light confinement. Here, we combine BICs and photonic bandgaps to realize three-dimensional light confinements, as referred to miniaturized BICs (mini-BICs). We demonstrate highly compact active mini-BIC resonators with a record high-quality (Q) factor of up to 32,500, which enables single-mode lasing with the lowest threshold of 80 W/cm2 among the reported BIC lasers. In addition, photon statistics measurements further confirm the occurrence of the stimulated emission in our devices. Our work reveals a path toward compact BIC lasers with ultralow power consumption and potentially boosts the applications in cavity quantum electrodynamics, nonlinear optics, and integrated photonics.

6.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 5): o1185, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21754487

RESUMO

In the title compound, C(16)H(20)N(2)O(6), two intra-molecular N-H⋯O hydrogen bonds occur, in which the carbonyl O atoms of the ethyl acetate groups serve as the acceptor atoms; both motifs generate S(6) rings. In the crystal, mol-ecules are linked by weak C-H⋯O links (with the acceptor O atoms part of the amide groups), generating [001] chains.

7.
J Nanosci Nanotechnol ; 21(9): 4715-4725, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691857

RESUMO

Surface-enhanced Raman scattering (SERS) has been a sensitive tool for the accurate detection and analysis of a wide range of molecules. In the present study, a simple and repeatable approach is developed for the fabrication of a silver nanocubes/polyelectrolyte/gold film (Ag nanocubes/PE/Au film) sandwich structure as SERS substrate. An ethanol-water mixture, instead of pure water, is used as solvent to reduce the coffee ring effect by the drop coating deposition method, such that Ag nanocubes are distributed evenly on the gold film surface with polyelectrolyte as the middle layer. In 15 repeated measurements of a 10-7 M rhodamine 6G solution, the intensity of the Raman peak at 609 cm-1 exhibits a relative standard deviation less than 20%. Significantly, the sandwich substrate exhibits excellent point-to-point repeatability and sample to sample reproducibility, and may be used for real-life quantitative analysis, as demonstrated by the rapid diagnosis of dual analytes of rhodamine 6G and crystal violet.


Assuntos
Nanopartículas Metálicas , Prata , Etanol , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman
8.
R Soc Open Sci ; 5(5): 171516, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892354

RESUMO

Nitric oxide (NO) may cause serious environmental problems, such as acid rain, haze weather, global warming and even death. Herein, a new low-cost, highly efficient and green method for the elimination of NO using zirconium nitride (ZrN) is reported for the first time, which does not produce any waste or any by-product. Relevant experimental parameters, such as reaction temperature and gas concentration, were investigated to explore the reaction mechanism. Interestingly, NO can be easily decomposed into nitrogen (N2) by ZrN powders at 600°C with ZrN simultaneously transformed into zirconium dioxide (ZrO2) gradually. The time for the complete conversion of NO into N2 was approximately 14 h over 0.5 g of ZrN at a NO concentration of 500 ppm. This green elimination process of NO demonstrated good atom economy and practical significance in mitigating environmental problems.

9.
Sci Rep ; 7(1): 13044, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026175

RESUMO

Zirconium phosphide (ZrP) powders were synthesized by elemental combination method via the direct reaction of zirconium powders with red phosphorus, and characterized by XRD, SEM, XPS, XRF, SAED and TEM measurements. The obtained ZrP powders were found to exhibit apparent activity in the ready eliminateion of nitric oxide (NO) via facile redox reactions, and the elimination dynamics was evaluated within the context of various important experimental parameters, such as reaction temperature and gas concentration. At a fixed amount of ZrP powders, an increasing amount of NO would be eliminated with increasing reaction temperature, and complete conversion of NO to N2 could be reached in the range of 700 to 800 °C. The addition of NH3 also facilitated NO elimination at a fixed reaction temperature. Furthermore, of the products of the elimination process, zirconia (ZrO2) powder is a kind of biocompatible material, red phosphorus can be used to produce safety matches, organophosphorous pesticide and phosphor bronze, and the produced N2 might be collected and used as a protective gas or be converted into liquid nitrogen for other purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA