Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 127: 519-529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522082

RESUMO

Metal smelting have brought severe metal(loid)s contamination to the soil. Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied. The results showed that soil was contaminated heavily with metal(loid)s. The mean of lead (Pb), arsenic (As), cadmium (Cd), mercury (Hg) and antimony (Sb) content in topsoil is 9.7, 8.2, 5.0, 2.3, and 1.2 times higher than the risk screening value for soil contamination of development land of China (GB36600-2018), respectively. Cd is mainly enriched in the 0-6 m depth of site soil while As and Pb mainly deposited in the 0-4 m layer. The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter. As, Hg, Sb, Pb and copper (Cu) were mainly distributed in pyrometallurgical area, while Cd, thallium (Tl) and zinc (Zn) was mainly existed in both hydrometallurgical area and raw material storage area. Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources, accounting for 84.5%. Specifically, Pb, Tl, As, Hg, Sb and Cu mainly from atmospheric deposition (55.9%), Cd and Zn mainly from surface runoff (28.6%), While nickel (Ni) mainly comes from parent material (15.5%). The results clarified the spatial distribution and their sources in different functional areas of the smelter, providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.


Assuntos
Arsênio , Mercúrio , Metaloides , Metais Pesados , Poluentes do Solo , Solo , Zinco/análise , Metais Pesados/análise , Poluentes do Solo/análise , Chumbo , Cádmio , Monitoramento Ambiental/métodos , Arsênio/análise , China , Medição de Risco , Metaloides/análise
2.
J Phys Chem A ; 123(4): 796-810, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30601656

RESUMO

Thiophene sulfur is the most stable organic sulfur species in petroleum coke, among which benzothiophene accounts for a significant portion. Removal of benzothiophene will help to gain ultralow desulfurization. In this work, a density function theory (DFT) method was adopted to investigate benzothiophene pyrolysis mechanism. It was found that the most possible pyrolysis reaction of benzothiophene is triggered by α-H migration to ß-position. The dominating products are S radical and ethenethione, which could explain benzothiophene pyrolysis experiments well. Converting thiophene fused on aromatic to a thiol group could help to promote desulfurization. As a contrast, the thiophene pyrolysis reaction was also calculated at the same level. The initial pyrolysis temperature of benzothiophene and thiophene may be close, but the pyrolysis rate of thiophene is higher than that of benzothiophene. The implication of the benzothiophene pyrolysis mechanism may be beneficial for the development of new desulfurization technology.

3.
Sci Total Environ ; 921: 171072, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382617

RESUMO

The mobility and toxicity of arsenic are significantly influenced by the natural minerals. A comprehensive understanding of the interaction between arsenic and minerals is crucial for elucidating the natural behavior of arsenic and advancing arsenic remediation strategies. In this study, the mechanism of As (III) oxidation in the presence of pyrite without light irritation was investigated by experimental and theoretical approaches. Quenching experiment and electron paramagnetic resonance analysis confirm •OH and •O2H is the predominant oxidant of As (III) under acidic and alkaline condition, respectively. Density Functional Theory (DFT) calculations indicate on the pyrite surface, the surface oxygen species is insignificant in As(III) oxidation but crucial for the generation of reactive oxygen species (ROS). In the solution, •OH, •O2H, Fe(IV), and 1O2 are the favored oxidants for As(III), while ROS, 3O2, and Fe(III) possess the capability to convert As(IV) to As(V). The major mechanism of As(III) oxidation in the presence of pyrite without light irritation primarily involves three elementary reactions: (1) •OH facilitating As(III) conversion to As(IV), (2) 3O2 oxidizing As(IV) to As(V) and •O2H, and (3) As(V) and •OH generating in •O2H reacting with As(III). As(IV) emerges as a critical intermediate capable of initiating chain reactions in arsenic oxidation. This study provides atomic-scale insight into the As(III) oxidation in pyrite suspension, which is important for understanding arsenic behavior in analogous oxidation systems.

4.
Environ Sci Pollut Res Int ; 30(3): 6919-6934, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36018405

RESUMO

In this work, the removal performance of three environmentally friendly reagents, oxalic acid (OA), citric acid (CA), and a copolymer of maleic and acrylic acid (PMAA), on heavy metals in polluted soil was studied at the optimum conditions and compared their sequenced performance. The results showed that the consecutive washing with the individual acids significantly improved the removal percentage of heavy metals in the soil compared to that of EDTA (10.2%, 71.3%, 29.8%, 61.6%, and 52.4% removal for As, Cd, Cu, Pb, and Zn, respectively). The removal of As, Cd, Cu, Pb, and Zn in the sequence of CA-OA was 65.6%, 79%, 59.1%, 64.6%, and 63.5%, respectively. In addition, the organic acids had little influence on the soil physicochemical properties after washing with slight reductions of acidity (pH) and soil organic matter (SOM), which are the major determinants of the usability of washed soils for plant growth. The germination rate of Sorghum bicolor in CA-OA-washed soils reached over 70% on the 7th day. CA-OA-washed soils collectively stand out in using washed soils for plant growth with the following advantages: simultaneous removal of cationic and anionic metals, less harmful impact on soil properties, and successful support for the germination of crops. Based on the findings, we recommend the CA-OA sequence as the best alternative to EDTA with higher metal removal efficiency and germination success.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético/química , Indicadores e Reagentes , Cádmio/análise , Ácido Cítrico/química , Ácido Oxálico , Chumbo , Quelantes/química , Metais Pesados/análise , Solo/química , Ácidos , Poluentes do Solo/análise
5.
Sci Total Environ ; 895: 165037, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355107

RESUMO

Understanding the spatial distribution, source identification, and migration fate of toxic metals is crucial for managing the potential risks associated with metal(loid)s in abandoned Pb/Zn mines. This study provides a comprehensive analysis of the heterogeneous characteristics, contamination sources, and migration fate of metal(loid)s in both mine soil and groundwater. The results reveal that the abandoned mine soil is primarily contaminated with As and Pb, whereas groundwater in the mining and smelting area is mainly contaminated with Pb. The concentrations of As and Pb in the soil reached a maximum of 37.5 mg/kg and 289 mg/kg, respectively, significantly exceeding the local background values of 13.6 mg/kg for As and 29 mg/kg for Pb. The sources of soil contamination were attributed to historical smelting activities (31.4 %) for As, Cd, Hg, and Sb, while Pb and Mn were primarily derived from the ore-deposited belt (21.5 %). Machine learning predictions indicate that the migration of As in the soil can extend up to six meters or more, predominantly influenced by the presence of grit and silt. As a significant source of groundwater contamination, both soil As and Cd can infiltrate the groundwater through convection or diffusion processes. In conclusion, it is imperative to address the long-term release of heterogeneous metal ores in the soil of abandoned mine sites, as this can severely deteriorate the quality of both soil and groundwater.

6.
Sci Total Environ ; 889: 164145, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209739

RESUMO

Soil particle sizes and mineral phases play a major role in the migration of arsenic (As) in mine. In this study, soil As fractionation and mineralogical composition in different particle sizes soil at naturally mineralized and anthropogenically disturbed zones from an abandoned mine were comprehensively studied. The results showed that soil As contents in anthropogenically disturbed mining zone (MZ), processing zone (PZ), and smelting zone (SZ) were increased with decreasing of soil particle sizes. The contents of As in the fine soil particles (0.45-2 µm) reached to 850-4800 mg·kg-1, which mainly existed at readily soluble, specifically sorbed, and Al-oxide fractions, and contributed to 25.9-62.6 % of the total As contents in soil. Conversely, soil As contents in naturally mineralized zone (NZ) were decreased with decreasing of soil particle sizes and As was mainly accumulated in the coarse fraction of soil (0.075-2 mm). Despite the speciation of As in 0.075-2 mm soil mainly existed as residual fraction, the content of non-residual As fraction reached up to 1636 mg·kg-1, indicating a high potential risk of As in naturally mineralized soil. The utilization of scanning electron microscopy, fourier transform infrared spectroscopy combined with mineral liberation analyzer revealed that soil As in NZ and PZ was mainly retained by iron (hydrogen)oxide, while whereas the dominant host minerals for soil As in MZ and SZ were the surrounding rocks of calcite and the iron-rich silicate mineral biotite. Notably, both of the calcite and biotite exhibited high mineral liberation, which was partly contributed to a significant portion of mobile As fraction in MZ and SZ soil. The results suggested that the potential risks of soil As from SZ and MZ at abandoned mine, particularly in the fine soil particles, should be a prior concern.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Solo/química , Tamanho da Partícula , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Silicatos de Alumínio , Ferro , Minerais/análise , Carbonato de Cálcio
7.
ACS Omega ; 6(31): 20471-20482, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395994

RESUMO

Thiophenic sulfur is the most stable and abundant organic sulfur species in petroleum. Removal of thiophenes has profound significance in environmental protection. In this work, we investigate the unimolecular pyrolysis of thiophene from a kinetic perspective. High-level ab initio methods have been employed to deduce the potential energy surface. Rate coefficients of the elementary reactions are computed using variational transition-state theory at the CCSD(T)/CBS level to develop a kinetic model. By comparison with preceding experimental results, the kinetic model shows good performance in calculating the thiophene pyrolysis rate. The Arrhenius expression for thiophene unimolecular pyrolysis has been redetermined as k = 1.21 × 1013 × exp[(78.96 kcal/mol)/(RT)]. The unimolecular pyrolysis of thiophene is mainly initiated by the ring-H migrations, whereas the C-S bond rupture has limited contribution to the overall pyrolysis rate. Thioketene (SC2H2) and ethyne (C2H2) are the major pyrolysis products at all temperatures. Significant amounts of the thioformyl (HCS) radical and CS could also be yielded. By contrast, atomic sulfur and H2S are difficult to be directly produced. Possible secondary reactions in the products have also been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA