Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Environ Manage ; 341: 118111, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156025

RESUMO

Discharge of saline organic wastewater is increasing worldwide, yet how salt stress disrupts the microbial community's structure and metabolism in bioreactors has not been systematically investigated. The non-adapted anaerobic granular sludge was inoculated into wastewater with varying salt concentration (ranging from 0% to 5%) to examine the effects of salt stress on the structure and function of the anaerobic microbial community. Result indicated that salt stress had a significant impact on the metabolic function and community structure of the anaerobic granular sludge. Specifically, we observed a notable reduction in methane production in response to all salt stress treatments (r = -0.97, p < 0.01), while an unexpected increase in butyrate production (r = 0.91, p < 0.01) under moderate salt stress (1-3%) with ethanol and acetate as carbon sources. In addition, analysis of microbiome structures and networks demonstrated that as the degree of salt stress increased, the networks exhibited lower connectance and increased compartmentalization. The abundance of interaction partners (methanogenic archaea and syntrophic bacteria) decreased under salt stress. In contrast, the abundance of chain elongation bacteria, specifically Clostridium kluyveri, increased under moderate salt stress (1-3%). As a consequence, the microbial carbon metabolism patterns shifted from cooperative mode (methanogenesis) to independent mode (carbon chain elongation) under moderate salt stress. This study provides evidence that salt stress altered the anaerobic microbial community and carbon metabolism characteristics, and suggests potential guidance for steering the microbiota to promote resource conversion in saline organic wastewater treatment.


Assuntos
Microbiota , Águas Residuárias , Esgotos/química , Anaerobiose , Carbono/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Metano
2.
J Environ Manage ; 340: 117888, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37087891

RESUMO

Bioremediation is one of the most promising strategies for heavy metal immobilization. A new remediation system was demonstrated in this research, which combined phosphate solubilizing bacteria (PSB) with nZVI@Carbon/Phosphate (nZVI@C/P) composite to remediate lead contaminated soil. Experimental results indicated that the new system (nZVI@C/P + PSB) could effectively convert the labile Pb into the stable fraction after 30 days of incubation, which increased the maximum residual fraction percentage of Pb by 70.58%. The characterization results showed that lead may exist in the forms of Pb5(PO4)3Cl, PbSO4 and 3PbCO3·2Pb(OH)2·H2O in the soil treated with nZVI@C/P + PSB. Meanwhile, soil enzyme activities and Leclercia abundance were enhanced in the treated soil compared with CK during the incubation time. In addition, the specialized functions (e.g. ABC transporters, siderophore metabolism, sulfur metabolism and phosphorus metabolism) in PSB and nZVI@C/P + PSB group were also enhanced. These phenomena proved that the key soil metabolic functions may be maintained and enhanced through the synergistic effect of incubated PSB and nZVI@C/P. The study demonstrated that this new bioremediation system provided feasible way to improve the efficacy for lead contaminated soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Fosfatos/química , Biodegradação Ambiental , Carbono/metabolismo , Chumbo , Solo/química , Poluentes do Solo/química , Enterobacteriaceae , Bactérias/metabolismo
3.
Plant Dis ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167517

RESUMO

Virginia creeper (Parthenocissus quinquefolia [L.] Planch.) belongs to the genus of Parthenocissus and Vitaceae family, which is very common in vineyards and where wild grape occurs (Bergh et al., 2011). In September of 2021, a severe white rot disease was observed on Virginia creeper around the vineyard of wine grapevine (Cabernet Sauvignon) located in Penglai city (37º 75'38" N, 120º 84'28" E), Shandong province of China. The disease incidence was about 75%, and infected leaf of Virginia creeper exhibited irregular necrotic lesion with brown center, and most lesion occurred on leaf margin, black pycnidia were also observed on the infected leaf at the late stage of infection. To determine the causal agent, symptomatic leaves with typical lesions were cut into small pieces (5 mm × 3 mm), surface sterilized with 75% ethanol for 1 min, followed by three times rinsed in sterile water. Leaf sections were plated onto potato dextrose agar (PDA) medium and incubated at 28°C for 3 days. Totally, five isolates (referred to as JD01, JD07, JD09, JD12 and JD16) were collected and transferred on to fresh PDA medium for incubation at 28°C. Seven days later, colonies on PDA plates had crenulated edges with concentric rings, the upper surface of colonies was mostly flat and white with many pycnidia. The conidia were hyaline at immature and became brown later, spherical or ellipsoid, aseptate, and 7.92 ± 1.20 µm × 5.18 ± 0.61 µm (n=50), length : width ratio is nearly 2. Morphologically, the isolates were identified as Coniella vitis (Chethana et al., 2017). Further to confirm the fungal species, the internal transcribed spacer region (ITS) of the ribosomal RNA gene, large subunit rRNA gene (LSU) and the translation elongation factor 1-alpaha gene (TEF1-α) were amplified using primers ITS1/ ITS4, LR7/ LROR, and TEF1- 728F/ TEF1- 986R (Chethana et al., 2017; Raudabaugh et al., 2018). The amplification products were sequenced and deposited in GenBank database. The sequences were compared to type sequences in GenBank. The results showed that ITS (GenBank accession numbers ON329769, ON329770, ON329771, ON329772 and ON329773), LSU (ON358423,ON358424, ON358425, ON358426 and ON358427) and TEF (ON297671, ON229071, ON229072, ON229073 and ON297672) sequences of the five isolates were 99.66%, 96.90% and 98.79% identical with the sequences data from C. vitis isolates in GeneBank (MFLUCC 18-0093, JZB3700020 and MFLUCC 18-0093, respectively). Furthermore, concatenated sequences of the three genes (ITS, LSU and TEF) were used to conduct a phylogenetic tree using maximum likehood MEGA-X (Raudabaugh et al., 2018). The phylogenetic analysis showed that the five isolates (JD01, JD07, JD09, JD12 and JD16) belong to C. vitis clade among the 41strains of Coniella spp. In the pathogenicity tests, detached leaves of Virginia creeper (1-year-old) were inoculated with mycelia plugs (5 mm diameter) (form 3-day-old of isolate JD07 culture), and control were inoculated with PDA plugs (5 mm diameter). Virginia creeper live plants (1-year-old) were inoculated with conidial suspension (2.5×106 spores/ml) of the isolate JD07 of one week old, and control plants were inoculated with sterile water. All treated Virginia creeper plants (detached leaves) were placed in a greenhouse maintained at 28°C and 95% relative humidity. Virginia creeper plants (detached leaves) inoculated with the conidial suspension (fungal mycelia) had brown lesion on leaves, the disease symptoms were similar to those observed in field. No such symptoms were observed on control plants (detached leaves). The pathogen was reisolated from inoculated Virginia creeper plants and re-identified, thus fulfilling Koch's postulates. C. vitis had been reported to cause grape white rot in China (Chethana et al., 2017). Virginia creeper, as an excellent host of C. vitis, will increase the transmission risk of the pathogens. To our knowledge, this is the first report of C. vitis causing white rot on Virginia creeper, and this finding will provide useful information for developing effective control strategies for white rot disease.

4.
Water Sci Technol ; 83(3): 689-700, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33600372

RESUMO

The widespread implementation of municipal wastewater treatment and reuse must first ensure the safety of reused wastewater. The effluent of the municipal wastewater treatment plant contains a large amount of dissolved organic matter (DOM), which adversely affects the reuse of wastewater. In this study, the ultrafiltration (UF) + reverse osmosis (RO) process was used to treat the secondary effluent from wastewater treatment plants. The relationship between the removal performance, membrane fouling of the UF + RO process, and DOM removal characteristics of influent were studied. The results show that DOM can be removed effectively by UF + RO process. The UF mainly removes DOM with a molecular weight greater than 10 kDa, while RO has a significant removal effect on low-molecular-weight DOM, which mainly causes UF and RO membrane fouling. The UF + RO process has a significant removal rate on fulvic acid, humic acid, tyrosine, and tryptophan, and the order is humic acid > fulvic acid > tyrosine > tryptophan. Fulvic acid contributed the most to the UF membrane fouling, while fulvic acid and protein-like proteins contributed mainly to the RO membrane fouling.


Assuntos
Ultrafiltração , Purificação da Água , Filtração , Membranas Artificiais , Osmose , Águas Residuárias
5.
New Phytol ; 222(2): 1012-1029, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609067

RESUMO

Verticillium dahliae is a broad host-range pathogen that causes vascular wilts in plants. Interactions between three hosts and specific V. dahliae genotypes result in severe defoliation. The underlying mechanisms of defoliation are unresolved. Genome resequencing, gene deletion and complementation, gene expression analysis, sequence divergence, defoliating phenotype identification, virulence analysis, and quantification of V. dahliae secondary metabolites were performed. Population genomics previously revealed that G-LSR2 was horizontally transferred from the fungus Fusarium oxysporum f. sp. vasinfectum to V. dahliae and is exclusively found in the genomes of defoliating (D) strains. Deletion of seven genes within G-LSR2, designated as VdDf genes, produced the nondefoliation phenotype on cotton, olive, and okra but complementation of two genes restored the defoliation phenotype. Genes VdDf5 and VdDf6 associated with defoliation shared homology with polyketide synthases involved in secondary metabolism, whereas VdDf7 shared homology with proteins involved in the biosynthesis of N-lauroylethanolamine (N-acylethanolamine (NAE) 12:0), a compound that induces defoliation. NAE overbiosynthesis by D strains also appears to disrupt NAE metabolism in cotton by inducing overexpression of fatty acid amide hydrolase. The VdDfs modulate the synthesis and overproduction of secondary metabolites, such as NAE 12:0, that cause defoliation either by altering abscisic acid sensitivity, hormone disruption, or sensitivity to the pathogen.


Assuntos
Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Sequência de Bases , Etanolaminas/metabolismo , Genes Fúngicos , Variação Genética , Genoma Fúngico , Gossypium/genética , Ácidos Láuricos/metabolismo , Modelos Biológicos , Família Multigênica , Fenótipo , Metabolismo Secundário/genética
6.
Mol Plant Microbe Interact ; 31(2): 260-273, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29068240

RESUMO

Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Gossypium/imunologia , Gossypium/microbiologia , Verticillium/enzimologia , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Nicotiana , Verticillium/metabolismo , Verticillium/patogenicidade , Virulência
7.
New Phytol ; 217(2): 756-770, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084346

RESUMO

Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen.


Assuntos
Fusarium/genética , Transferência Genética Horizontal , Genoma Fúngico , Genômica , Gossypium/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Bases , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Lactuca/microbiologia , Solanum lycopersicum/microbiologia , Família Multigênica , Filogenia , Especificidade da Espécie , Sintenia/genética , Virulência/genética
8.
Environ Microbiol ; 19(5): 1914-1932, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205292

RESUMO

Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.


Assuntos
Glicosídeo Hidrolases/metabolismo , Gossypium/microbiologia , Nicotiana/microbiologia , Imunidade Vegetal/fisiologia , Receptores de Superfície Celular/metabolismo , Verticillium/patogenicidade , Morte Celular , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Fatores de Virulência/metabolismo
9.
Plant Biotechnol J ; 15(12): 1520-1532, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28371164

RESUMO

Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10-5 (P = 1/85 630, -log10 P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton.


Assuntos
Gossypium/genética , Gossypium/microbiologia , Verticillium/patogenicidade , China , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único
10.
Biotechnol Bioeng ; 113(8): 1702-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26803924

RESUMO

Lignocellulosic biomass has great potential for use as a carbon source for the production of second-generation biofuels by solventogenic bacteria. Here we describe the production of butanol by a newly discovered wild-type Clostridium species strain G117 with xylan as the sole carbon source for fermentation. Strain G117 produced 0.86 ± 0.07 g/L butanol and 53.4 ± 0.05 mL hydrogen directly from 60 g/L xylan provided that had undergone no prior enzymatic hydrolysis. After process optimization, the amount of butanol produced from xylan was increased to 1.24 ± 0.37 g/L. In contrast to traditional acetone-butanol-ethanol (ABE) solventogenic fermentation, xylan supported fermentation in strain G117 and negligible amount of acetone was produced. The expression of genes normally associated with acetone production (adc and ctfB2) were down-regulated compared to xylose fed cultures. This lack of acetone production may greatly simplify downstream separation process. Moreover, higher amount of butanol (2.94 g/L) was produced from 16.99 g/L xylo-oligosaccharides, suggesting a major role for strain G117 in butanol production from xylan and its oligosaccharides. The unique ability of strain G117 to produce a considerable amount of butanol directly from xylan without producing undesirable fermentation byproducts opens the door to the possibility of cost-effective biofuels production in a single step. Biotechnol. Bioeng. 2016;113: 1702-1710. © 2016 Wiley Periodicals, Inc.


Assuntos
Biocombustíveis , Butanóis/metabolismo , Clostridium/metabolismo , Xilanos/metabolismo , Acetona/análise , Acetona/metabolismo , Butanóis/análise , Hidrogênio/análise , Hidrogênio/metabolismo , Lignina/metabolismo , Microbiologia do Solo , Xilanos/análise , Xilose/análise , Xilose/metabolismo
11.
Chemosphere ; 359: 142340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754487

RESUMO

The bioaccumulation and toxicity of heavy metals are serious threats to human activities and ecological health. The exploitation of environmentally friendly passivated materials is major importance for the remediation of heavy metal contaminated soil. This research developed a new type of environmental functional material with a core-shell structure, which is an iron-based material functionalized with phosphorus and carbon from sludge for heavy metal pollution remediation. The results indicated that the C/P@Fe exhibits excellent heavy metal removal ability, and the maximum removal rates of the two heavy metals in simulated wastewater could reach 100% under optimum reaction conditions. It also effectively converts the labile Cr/Pb into the stable fraction after 28 days of incubation, which increased the maximum residual fraction percentage of Cr and Pb by 32.43% and 160% in soil. Further analysis found that the carbon layer wrapped around the iron base could improve the electron transport efficiency of reducing iron, phosphorus and ferrum could react with heavy metal ions to form stable minerals, such as FeCr2O4, FeO·Cr2O3, Pb5(PO4)3OH, PbCO3, 2PbCO3·Pb(OH)2 and PbS, after reacting with C/P@Fe. The study demonstrated that the Iron-based materials functionalized with carbon and phosphorus from sludge provided a more efficient way to remove heavy metals.


Assuntos
Carbono , Cromo , Ferro , Chumbo , Fósforo , Esgotos , Poluentes do Solo , Águas Residuárias , Fósforo/química , Esgotos/química , Ferro/química , Carbono/química , Águas Residuárias/química , Chumbo/química , Poluentes do Solo/química , Poluentes do Solo/análise , Cromo/química , Solo/química , Minerais/química , Metais Pesados/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química
12.
Pathogens ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921802

RESUMO

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

13.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057393

RESUMO

Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124884, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089068

RESUMO

The overuse of quinolone antibiotics has led to a series of health and environmental issues. Herein, we combine the distinct luminescence properties of Eu3+ with the unique structure of covalent organic frameworks (COFs) to develop a precise and sensitive fluorescent probe for detecting Flumequine (Flu) in water. Eu3+ is thoroughly anchored into the channels of COFs as recognition sites, while the synthesized probe material still maintains its intact framework structure. The unique structure of COFs provides excellent support and protection for Eu3+. Therefore, COF-Eu can rapidly bind with Flu which can transfer the absorbed energy to Eu3+ through an "antenna effect", resulting in red fluorescence. Moreover, there is a good linear relationship between Flu concentration in the range of 0-30 µM, with a detection limit of 41 nM. Simultaneously, the material maintains remarkable reproducibility, with its performance remaining almost unchanged after five cycles of use. Remarkably, the probe demonstrates excellent Flu recovery rates in real samples. This study provides a viable approach for the recognition of flumequine in the environment through a customized fluorescence detection method.

15.
Plants (Basel) ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339588

RESUMO

Silique development exerts significant impacts on crop yield. CRPs (Cysteine-rich peptides) can mediate cell-cell communication during plant reproduction and development. However, the functional characterization and regulatory mechanisms of CRPs in silique development remain unclear. In this study, we identified many CRP genes downstream of the CRP gene TPD1 (TAPETUM DETERMINANT1) during silique development using a microarray assay. The novel Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) gene AtPCP-Ba, along with TPD1, are essential for silique development. The AtPCP-Ba was significantly down-regulated in tpd1 flower buds but up-regulated in OE-TPD1 flower buds and siliques. The silencing of AtPCP-Ba compromised the wider silique of OE-TPD1 plants and inhibited the morphology of OE-TPD1 siliques to the size observed in the wild type. A total of 258 CRPs were identified with the bioinformatic analysis in Arabidopsis, Brassica napus, Glycine max, Oryza sativa, Sorghum bicolor, and Zea mays. Based on the evolutionary tree classification, all CRP members can be categorized into five subgroups. Notably, 107 CRP genes were predicted to exhibit abundant expression in flowers and fruits. Most cysteine-rich peptides exhibited high expression levels in Arabidopsis and Brassica napus. These findings suggested the involvement of the CRP AtPCP-Ba in the TPD1 signaling pathway, thereby regulating silique development in Arabidopsis.

16.
Sci Total Environ ; 893: 164710, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301386

RESUMO

The municipal wastewater treatment systems (MWTSs) are the leading enrichment site of antibiotic resistance genes (ARGs), the occurrence of which in sewage and sludge significantly influences the ARGs burden of aerosols. However, the migration behavior and impact factors of ARGs in gas-liquid-solid phase are still unclear. This study collected gas (aerosol), liquid (sewage), and solid (sludge) samples from three MWTSs to explore the cross-media transport behavior of ARGs. The results showed that the main ARGs detected in the solid-gas-liquid phase were consistent, constituting the central antibiotic resistance system of MWTSs. Multidrug resistance genes dominated cross-media transmission (average relative abundance is 42.01 %). Aminocoumarin, fluoroquinolone, and aminoglycoside resistance genes (aerosolization index of 1.260, 1.329, and 1.609, respectively) were prone to migrating from the liquid to gas phase, resulting in long-distance transmission. Environmental factors (mainly temperature and wind speed), water quality index (mainly COD), and heavy metals may be the key factors affecting the trans-media migration of ARGs between the liquid, gas, and solid phase. Based on partial least squares path modeling (PLS-PM), the migration of ARGs in gas phase is primarily influenced by ARGs' aerosolization potential in liquid and solid phase, while heavy metals indirectly influences almost all categories of ARGs. Impact factors aggravated the migration of ARGs in MWTSs through co-selection pressure. This study clarified the key pathways and impact factors that form the cross-media migration behavior of ARGs, which can more specifically control ARGs pollution from different media.


Assuntos
Metais Pesados , Purificação da Água , Antibacterianos/farmacologia , Esgotos , Águas Residuárias , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
17.
J Environ Sci (China) ; 24(4): 596-601, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22894092

RESUMO

Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH(4+)-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of COD(Cr), NH(4+)-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of COD(Cr), NH(4+)-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR.


Assuntos
Oxigênio/química , Reologia , Rios/química , Poluentes Químicos da Água/isolamento & purificação , Poluição da Água/análise , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Nitratos/isolamento & purificação , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Compostos de Amônio Quaternário/isolamento & purificação , Solubilidade , Eliminação de Resíduos Líquidos
18.
Artigo em Inglês | MEDLINE | ID: mdl-35162723

RESUMO

The components of waste cooking oil (WCO) are complex and contain toxic substances, which are difficult to treat biologically. Pseudomonas aeruginosa WO2 was isolated from oily sludge by an anaerobic enrichment-aerobic screening method, which could efficiently utilize WCO and produce rhamnolipid. The effects of nutrients and culture conditions on bacterial growth and lipase activity were investigated to optimize the fermentation of WCO. The results showed that strain WO2 utilized 92.25% of WCO and produced 3.03 g/L of rhamnolipid at 120 h. Compared with inorganic sources, the organic nitrogen source stabilized the pH of fermentation medium, improved lipase activity (up to 19.98 U/mL), and promoted the utilization of WCO. Furthermore, the WO2 strain exhibited inferior utilization ability of the soluble starch contained in food waste, but superior salt stress up to 60 g/L. These unique characteristics demonstrate the potential of Pseudomonas aeruginosa WO2 for the utilization of high-salinity oily organic waste or wastewater.


Assuntos
Pseudomonas aeruginosa , Eliminação de Resíduos , Culinária , Alimentos , Glicolipídeos , Tensoativos/química
19.
Pathogens ; 11(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215191

RESUMO

Grape white rot caused by Coniella vitis is prevalent in almost all grapevines worldwide and results in a yield loss of 10-20% annually. Bacillus velezensis is a reputable plant growth-promoting bacterial. Strain GSBZ09 was isolated from grapevine cv. Red Globe (Vitis vinifera) and identified as B. velezensis according to morphological, physiological, biochemical characteristics and a multilocus gene sequence analysis (MLSA) based on six housekeeping genes (16S rRNA, gyrB, rpoD, atpD, rho and pgk). B. velezensis GSBZ09 was screened for antifungal activity against C. vitis under in vitro and in vivo conditions. GSBZ09 presented broad spectrum antifungal activity and produced many extracellular enzymes that remarkably inhibited the mycelial growth and spore germination of C. vitis. Furthermore, GSBZ09 had a high capacity for indole-3-acetic acid (IAA) production, siderophore production, and mineral phosphate solubilization. Pot experiments showed that the application of GSBZ09 significantly decreased the disease index of the grape white rot, directly promoted the growth of grapes, and upregulated defense-related enzymes. Overall, the features of B. velezensis GSBZ09 make it a potential strain for application as a biological control agent against C. vitis.

20.
Front Microbiol ; 13: 975344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160187

RESUMO

Paenibacillus peoriae is a plant growth-promoting rhizobacteria (PGPR) widely distributed in various environments. P. peoriae ZBFS16 was isolated from the wheat rhizosphere and significantly suppressed grape white rot disease caused by Coniella vitis. Here, we present the complete genome sequence of P. peoriae ZBFS16, which consists of a 5.83 Mb circular chromosome with an average G + C content of 45.62%. Phylogenetic analyses showed that ZBFS16 belongs to the genus P. peoriae and was similar to P. peoriae ZF390, P. peoriae HS311 and P. peoriae HJ-2. Comparative analysis with three closely related sequenced strains of P. peoriae identified the conservation of genes involved in indole-3-acetic acid production, phosphate solubilization, nitrogen fixation, biofilm formation, flagella and chemotaxis, quorum-sensing systems, two-component systems, antimicrobial substances and resistance inducers. Meanwhile, in vitro experiments were also performed to confirm these functions. In addition, the strong colonization ability of P. peoriae ZBFS16 was observed in soil, which provides it with great potential for use in agriculture as a PGPR. This study will be helpful for further studies of P. peoriae on the mechanisms of plant growth promotion and biocontrol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA