RESUMO
The regulated biosynthesis of chlorophyll is important because of its effects on plant photosynthesis and dry biomass production. In this study, a map-based cloning approach was used to isolate the cytochrome P450 -like gene BnaC08g34840D (BnCDE1) from a chlorophyll-deficient mutant (cde1) of Brassica napus obtained by ethyl methanesulfonate (EMS) mutagenization. Sequence analyses revealed that BnaC08g34840D in the cde1 mutant (BnCDE1I320T ) encodes a substitution at amino acid 320 (Ile320Thr) in the conserved region. The over-expression of BnCDE1I320T in ZS11 (i.e., gene-mapping parent with green leaves) recapitulated a yellow-green leaf phenotype. The CRISPR/Cas9 genome-editing system was used to design two single-guide RNAs (sgRNAs) targeting BnCDE1I320T in the cde1 mutant. The knockout of BnCDE1I320T in the cde1 mutant via a gene-editing method restored normal leaf coloration (i.e., green leaves). These results indicate that the substitution in BnaC08g34840D alters the leaf color. Physiological analyses showed that the over-expression of BnCDE1I320T leads to decreases in the number of chloroplasts per mesophyll cell and in the contents of the intermediates of the chlorophyll biosynthesis pathway in leaves, while it increases heme biosynthesis, thereby lowering the photosynthetic efficiency of the cde1 mutant. The Ile320Thr mutation in the highly conserved region of BnaC08g34840D inhibited chlorophyll biosynthesis and disrupted the balance between heme and chlorophyll biosynthesis. Our findings may further reveal how the proper balance between the chlorophyll and heme biosynthesis pathways is maintained.
RESUMO
Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.
RESUMO
BACKGROUND: Germline BRCA mutations (gBRCAm) occur in 4%-8% patients with metastatic pancreatic cancer (mPC); guidelines recommend platinum-based chemotherapies and olaparib maintenance in this population. We evaluated, through modeling, the role of treatments and gBRCA testing on health outcomes of mPC patients. METHODS: A decision tree/partitioned survival model was developed to assess lifetime health outcomes for four strategies: 1) no testing; 2) early testing/no olaparib maintenance; 3) early testing (i.e., before 1L treatment)/olaparib maintenance; and 4) late testing/olaparib maintenance. Treatment patterns were assumed to follow current practice in the United States. Overall survival and progression-free survival curves were extrapolated from pivotal trials, including POLO trial for outcomes from olaparib maintenance after at least 16 weeks of platinum-based chemotherapy. RESULTS: Among patients with gBRCAm, almost twice as many patients received platinum-based regimens in strategies involving early testing compared to when early testing was not employed (78.7 % vs 40.2 %). Health outcomes were highest in the strategy with early testing and available olaparib treatment whether considering progression-free life years (PF LYs, 1.27 vs 0.55-0.87), LYs (1.82 vs 0.95-1.27) or quality adjusted life years (QALYs, 1.15 vs 0.73-0.92 for others). Consistent patterns of results were observed in the overall cohort of mPC patients (i.e., irrespective of gBRCAm). CONCLUSION: Patients with mPC achieved longest health outcomes (as measured by mean PF LYs, LYs and QALYs) with a scenario of early gBRCA testing and availability of olaparib maintenance. The results were primarily driven by improved health outcomes associated with higher efficacy of platinum-based chemotherapies and olaparib used in gBRCAm patients.
Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Estados Unidos , Antineoplásicos/uso terapêutico , Intervalo Livre de Progressão , Mutação em Linhagem Germinativa , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genéticaRESUMO
A novel kind of carbon dot (CD) was prepared by one-step hydrothermal microwave assisted method using L-tryptophan and L-tartaric acid as raw materials. Monodisperse poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres were utilized as the matrix, with praseodymium (Pr) ion (Pr3+) as the template, methacrylic acid as the functional monomer, and 5-amino-8-hydroxyquinoline (5-AHQ) acts as the ligand. A composite microsphere of ion-imprinted polymer (IIP) and CD (noted CD@IIP) was prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). For comparison, IIP without CD (Pr-IIP) and non-imprinted polymer (NIP) were also prepared. Through static adsorption experiments, it was determined that the saturated adsorption amount of CD@IIP is 47.19 mg g-1, that of Pr-IIP is 54.49 mg g-1, while that of NIP is only 24.32 mg g-1. Dynamic adsorption experiments showed that the equilibrium of three kinds of materials was reached within 30 min. Particularly, CD@IIP could emit two fluorescence peaks at 325 nm and 421 nm under ultraviolet irradiation, and exhibited excellent selectivity and fluorescence quenching effect on Pr3+. The fluorescence response of Pr3+ in the range 0-400 µmol L-1 was determined by ratiometric fluorescence method, offering a two-stage model and robust linear regression coefficient. These results demonstrated that CD@IIP exhibited selective adsorption ability for Pr3+, and a sensitive, rapid and simple method for detection of Pr3+ was successfully developed.
RESUMO
We study ionization of atoms in strong orthogonal two-color (OTC) laser fields numerically and analytically. The calculated photoelectron momentum distribution shows two typical structures: a rectangular-like one and a shoulder-like one, the positions of which depend on the laser parameters. Using a strong-field model which allows us to quantitatively evaluate the Coulomb effect, we show that these two structures arise from attosecond response of electron inside an atom to light in OTC-induced photoemission. Some simple mappings between the locations of these structures and response time are derived. Through these mappings, we are able to establish a two-color attosecond chronoscope for timing electron emission, which is essential for OTC-based precise manipulation.
RESUMO
Increasing soil carbon (C) sequestration in paddy field and improving rice nitrogen use efficiency (NUE) are vital for sustainable agriculture and environmental protection. It was a benefit practice for achieving these goals by taken rice straw and organic manure managements. However, there is still need to further investigate the effects of different long-term fertilizer managements on soil C sequestration and NUE under the double-cropping rice system in southern of China. Therefore, the effects of different long-term (36-years) fertilizer practices on soil C sequestration and NUE under the double-cropping rice system in southern of China were investigated in the present paper. The field experiment was included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). This result indicated that soil C content at plough layer in paddy field with RF and OM treatments were increased, compared with MF and CK treatments. Besides input C directly into paddy field, soil original organic C accumulation with RF and OM treatments were increased by 1.54% and 3.01%, compared with MF treatment. This result indicated that soil TOC content increase rate and annual topsoil organic C sequestration rate in paddy field with RF and OM treatments increased by 55.56%, 88.89% and 48.05%, 76.62%, compared with MF treatment, respectively. Compared with MF treatment, NUE with RF and OM treatments increased by 10.43% and 22.61%, respectively, mainly due to increasing soil organic C. Grain yield of double-cropping rice with RF and OM treatments increased by 1009.5 and 1166.5 kg ha-1, compared with MF treatment, respectively. This result indicated that there was significantly correlation between NUE/NUENPK and TOC content with RF and OM treatments, at early rice and late rice growth seasons. Therefore, it was benefit practice for increasing soil carbon sequestration and improving rice NUE in the double-cropping rice system with long-term application of rice straw and organic manure managements.
Assuntos
Oryza , Solo , Agricultura , Carbono/análise , China , Fertilizantes/análise , Esterco/análise , Nitrogênio/análise , Oryza/química , Solo/químicaRESUMO
Resolvin D1 (RvD1) has been shown to provide effective protection against ischemia-reperfusion injury in multiple vital organs such as the heart, brain, kidney. However, the clinical translational potential of systemic administration of RvD1 in the treatment of ischemia-reperfusion injury is greatly limited due to biological instability and lack of targeting ability. Combining the natural inflammatory response and reactive oxygen species (ROS) overproduction after reperfusion injury, we developed a platelet-bionic, ROS-responsive RvD1 delivery platform. The resulting formulation enables targeted delivery of RvD1 to the injury site by hijacking circulating chemotactic monocytes, while achieving locally controlled release. In a mouse model of myocardial ischemia repefusuin (MI/R) injury, intravenous injection of our formula resulted in the enrichment of RvD1 in the injured area, which in turn promotes clearance of dead cells, production of specialized proresolving mediators (SPMs), and angiogenesis during injury repair, effectively improving cardiac function. This delivery system integrates drug bio-protection, targeted delivery and controlled release, which endow it with great clinical translational value.
Assuntos
Lipossomos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Preparações de Ação RetardadaRESUMO
To solve the problem of camera imaging quality degradation caused by defocusing during on-orbit operation, we propose an adaptive thermal refocusing system for high-resolution space cameras-the system comprising active and passive thermal refocusing. Using a space camera with a Ritchey-Chretien optical system as an example, the secondary mirror assembly was determined to be a passive thermal refocusing system, the primary mirror assembly being an active thermal refocusing system. We analyzed the system through structure/thermal/optics performance simulation when temperature variation ΔT was 5°C, 10°C, and 15°C; thermal vacuum experiments verified that the axial displacement of the active system was 0.0032, 0.0061, and 0.0090 mm, and the passive system was 0.00015, 0.00030, and 0.00069 mm, respectively. The data demonstrated the adaptive refocusing system theory to be consistent with the simulations and experiment, exhibiting high stability and reliability.
RESUMO
Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at the seedling stage and identified two highly salt-tolerant cultivars determined by the relative damage rate parameter. The majority of cultivars (94.1%) were ranked as salt-sensitive and highly salt-sensitive. Transcriptome profiling was completed in highly salt-tolerant, moderately salt-tolerant, and salt-sensitive under water and salinity treatments at the seedling stage. Principal component analysis displayed a clear distinction among the three cultivars under control and salinity stress conditions. Several starch and sucrose metabolism-related genes were induced after salt treatment in all genotypes at the seedling stage. The results from the present study enable the identification of the ascorbate glutathione pathway, potentially participating in the process of plant response to salinity in the early growth stage. Our findings also highlight the significance of high-affinity K+ uptake transporters (HAKs) and high-affinity K+ transporters (HKTs) during salt stress responses in rice seedlings. Collectively, the cultivar-specific stress-responsive genes and pathways identified in the present study act as a useful resource for researchers interested in plant responses to salinity at the seedling stage.
Assuntos
Perfilação da Expressão Gênica/métodos , Redes e Vias Metabólicas , Oryza/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Germinação , Oryza/classificação , Oryza/genética , Proteínas de Plantas/genética , Salinidade , Estresse Salino , Plântula/classificação , Plântula/genética , Amido/biossíntese , Sacarose/metabolismoRESUMO
OBJECTIVE: To assess the association of polymorphisms of glutathione S-transferase P1 (GSTP1) and phospholipase C epsilon-1 (PLCE1) genes with the susceptibility of primary esophageal cancer and their interaction with environmental factors. METHODS: 162 patients with primary esophageal cancer and 162 healthy controls were recruited in this cross-sectional study. Basic information such as gender, age, history of smoking and alcohol consumption and family history of esophageal cancer were collected. Single nucleotide polymorphisms at A105G locus of GSTP1 gene and rs3765524, rs2274223 and rs3781264 loci of PLCE1 gene were detected. A logistic regression model was established to analyze the risk factors of esophageal cancer and the interaction among the factors. RESULTS: The proportions of individuals with smoking history, family history of esophageal cancer and hot diet in esophageal cancer group were higher than those in the control group (P<0.05). Conditional Logistic regression analysis showed that smoking, family history of esophageal cancer and GG genotype at the rs2274223 locus of PLCE1 gene were the risk factors for esophageal cancer (P<0.05), and AG/GG genotypes at the A105G locus of GSTP1 gene were the protective factors for esophageal cancer (P<0.05). In the two-factor interaction model, both AA genotype at A105G locus of GSTP1 gene and GG genotype at rs2274223 locus of PLCE1 gene had an interaction with smoking, and the risk of esophageal cancer has increased by 83.6% and 85.7%, respectively (P<0.05). AA genotype at A105G locus of GSTP1 gene, GG genotype at rs2274223 locus of PLCE1 gene and smoking constituted the best three-factor interaction model, and the risk of esophageal cancer has increased by 244.0% (P<0.05). Four-factor interaction model analysis showed that the risk of esophageal cancer among individuals with AA genotype at A105G locus of GSTP1 gene, GG genotype at rs2274223 locus of PLCE1 gene, smoking and family history of esophageal cancer has increased by 264.4% (P<0.05). CONCLUSION: The AG and GG genotypes at the A105G locus of GSTP1 gene are protective factors for esophageal cancer, and the GG genotype at rs2274223 locus of PLCE1 gene is a risk factor, both of them may interact with smoking and affect the susceptibility to esophageal cancer.
Assuntos
Neoplasias Esofágicas , Predisposição Genética para Doença , Humanos , Glutationa Transferase/genética , Estudos Transversais , Estudos de Casos e Controles , Neoplasias Esofágicas/genética , Polimorfismo de Nucleotídeo Único , Genótipo , Fatores de Risco , Glutationa S-Transferase pi/genéticaRESUMO
BACKGROUND: Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. RESULTS: The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. CONCLUSIONS: A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.
Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genéticaRESUMO
PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti-PD-L1 or anti-PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Feminino , Coriomeningite Linfocítica/genética , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Soil nitrogen (N)-fixing bacteria community plays an important role in the N cycling process in soil, but there is still limited information about how the soil microbes that drive this process to respond to combined application of tillage and crop residue management under the double-cropping rice (Oryza sativa L.) paddy field in southern of China. Therefore, the effects of 6-years short-term tillage treatment on soil N-fixing bacteria community under the double-cropping rice paddy field in southern China were studied by using the polymerase chain reaction-denaturing gradient gel electrophoresis method. The field experiment included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), rotary tillage with crop residue removed as control (RTO). The results showed that the diversity index and richness index of cbbLR and nifH genes with CT, RT, and NT treatments were increased, compared with RTO treatment. Compared with RTO treatment, the abundance of cbbLR gene with CT, RT, and NT treatments were increased by 6.54, 4.73, and 2.78 times, respectively. Meanwhile, the abundance of nifH gene with CT, RT, and NT treatments were 5.32, 3.71, and 2.45 times higher than that of RTO treatment. The results also indicated that soil autotrophic Azotobacter and nitrogenase activity with CT and RT treatments were significantly higher (p < .05) than that of RTO treatment. There was an obvious difference in characteristic of soil N-fixing bacteria community between the application of crop residue and without crop residue input treatments. In summary, the results indicated that the abundance of N-fixing bacteria community in the double-cropping rice paddy field increased with conventional tillage and rotary tillage practice.
Assuntos
Ciclo do Nitrogênio/fisiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Oryza/microbiologia , Agricultura/métodos , Proteínas de Transporte/genética , China , Nitrogênio/análise , Bactérias Fixadoras de Nitrogênio/genética , Oxirredutases/genética , Solo/química , Microbiologia do SoloRESUMO
We study double ionization (DI) dynamics of vibrating HeH+ versus its isotopic variant HeT+ in strong laser fields numerically. Our simulations show that for both cases, these two electrons in DI prefer to release together along the H(T) side. At the same time, however, the single ionization (SI) is preferred when the first electron escapes along the He side. This potential mechanism is attributed to the interplay of the rescattering of the first electron and the Coulomb induced large ionization time lag. On the other hand, the nuclear motion increases the contributions of these two electrons releasing together along the He side. This effect differentiates DI of HeH+ from HeT+.
RESUMO
PURPOSE: To investigate the accuracy, dosimetric parameters, and safety of 3D-printing non-coplanar template (3D-PNCT)-assisted CT guidance for radioactive iodine-125 (125I) seed implantation brachytherapy (RSI-BT) for retroperitoneal recurrent carcinomas METHODS AND MATERIALS: We enrolled 15 patients with 17 retroperitoneal recurrent carcinomas after external beam radiotherapy (EBRT). All patients received CT-guided 125I RSI-BT assisted by 3D-PNCT successfully. We compared the original needle insertion position, angular, and the needle tip distance deviations of preoperative plan with that of intraoperative in brachytherapy treatment planning system (B-TPS). The dosimetric parameters of RSI-BT were evaluated on preoperative plan, intraoperative real-time plan, and postoperative plan, including D90, D100 (the dose to 90% and 100% of the target volume), V100, V150, and V200 (the volume receives 100%, 150%, and 200% of the prescribed doses). The quality assurance of RSI-BT evaluated on conformal index (CI), external index (EI), and homogeneity index (HI) of the targets were compared among preoperative plan, intraoperative real-time plan, and postoperative plan. The perioperation complications and RSI-BT-related toxicity were assessed. RESULTS: The median follow-up was 8.2 months (range 1-18.5 months). One patient was lost to follow-up after RSI-BT. Fourteen patients were assessed for response rate and toxicity. The mean entrance point distance deviation for all 165 needles was 4.50 ± 4.10 mm (range, 0-30). The mean angular deviation was 2.70 ± 3.00° (range, 0-20). The needle tip distance deviation was 6.90 ± 6.00 mm (range, - 30-28). D90 for preoperative plan, intraoperative plan, and postoperative plan were 140.55 ± 23.93, 124.25 ± 28.04, and 128.98 ± 22.75, respectively. There was significant difference between D90 of preoperative plan with that of intraoperative plan (p = 0.036). Four lesions reached CR, six lesions reached PR, three lesions were SD, and three lesions were PD. Four patients with moderate pain became mild, and two with mild pain relieved completely after RSI-BT. The other parameters showed no differences among preoperative plan, intraoperative plan, and postoperative plan. The perioperative complications were observed in four patients, including three patients of grade 1 and one patient of grade 2. No ≥ grade 3 side effects were observed. CONCLUSION: CT-guided 125I RSI-BT assisted by 3D-PNCT was a safe, accurate, and feasible strategy for recurrent carcinomas located in the retroperitoneal regions.
Assuntos
Braquiterapia , Carcinoma , Neoplasias da Glândula Tireoide , Braquiterapia/efeitos adversos , Humanos , Radioisótopos do Iodo/uso terapêutico , Recidiva Local de Neoplasia/radioterapia , Prognóstico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios XRESUMO
Carbon (C) is playing an important role in regulating soil nutrient cycling, maintaining soil fertility and crop yield, but there is still need to further study on how C source utilization characteristic respond to soil physical and chemical properties change with different fertilizer treatments under a double-cropping rice (Oryza sativa L.) field in southern China. Therefore, the effects of 34-year long-term fertilizer regime on C source utilization characteristic in rice rhizosphere and non-rhizosphere soils under a double-cropping rice field in southern China were studied by using 18 O-H2 O method in the present paper. The field experiments were included four fertilizer treatments: mineral fertilizer alone (MF), rice straw and mineral fertilizer (RF), 30% organic manure and 70% mineral fertilizer (OM), and without fertilizer input as control (CK). The results showed that microbial biomass C content, basal respiration of soil microorganism and microbial growth rate in rice rhizosphere and non-rhizosphere soils with OM and RF treatments were significantly higher (p < .05) than that of CK treatment. The microbial C utilization efficiency (CUE) in rhizosphere soil with MF and CK treatments were significantly higher (p < .05) than that of OM treatment, but there was no significantly difference (p > .05) in microbial CUE in non-rhizosphere soil between MF, RF, OM, and CK treatments. In the different parts of soil, the microbial biomass C content and basal respiration of soil microorganism in rhizosphere soil were higher than that of non-rhizosphere soil, but the microbial growth rate and microbial CUE in non-rhizosphere soil were higher than that of rhizosphere soil. Compared with CK and MF treatments, the metabolic capacity of soil microorganism to exogenic C source with RF and OM treatments were significantly higher (p < .05) than that of MF and CK treatments. The largest type of exogenic C source used by soil microorganism was carboxylic acids, followed by amino acid and carbohydrate, and complex compounds was the smallest. In the different parts of soil, the metabolic capacity of soil microorganism to the types of exogenic C source in non-rhizosphere soil was higher than that of rhizosphere soil. The redundancy analysis results indicated that there had obvious difference in utilization characteristic of soil microorganism to exogenic C source among different fertilizer treatments. In conclusion, this results indicated that characteristic of soil C source utilization were significantly changed under different long-term fertilizer condition.
Assuntos
Carbono/metabolismo , Fertilizantes/análise , Oryza/microbiologia , Rizosfera , Microbiologia do Solo , Agricultura/métodos , Biomassa , Carbono/análise , China , Oryza/crescimento & desenvolvimento , Oxigênio/metabolismo , Solo/químicaRESUMO
OBJECTIVE: To investigate the risk factors for cow's milk protein allergy (CMPA) among infants through a multicenter clinical study. METHODS: A total of 1 829 infants, aged 1-12 months, who attended the outpatient service of the pediatric department in six hospitals in Shenzhen, China from June 2016 to May 2017 were enrolled as subjects. A questionnaire survey was performed to screen out suspected cases of CMPA. Food avoidance and oral food challenge tests were used to make a confirmed diagnosis of CMPA CMPA. A multivariate logistic regression analysis was used to investigate the risk factors for CMPA. RESULTS: Among the 1 829 infants, 82 (4.48%) were diagnosed with CMPA. The multivariate logistic regression analysis showed that maternal food allergy (OR=4.91, 95%CI: 2.24-10.76, P<0.05), antibiotic exposure during pregnancy (OR=3.18, 95%CI: 1.32-7.65, P<0.05), and the introduction of complementary food at an age of <4 months (OR=3.55, 95%CI: 1.52-8.27, P<0.05) were risk factors for CMPA, while exclusive breastfeeding (OR=0.21, 95%CI: 0.08-0.58, P<0.05) and the introduction of complementary food at an age of >6 months (OR=0.38, 95%CI: 0.17-0.86, P<0.05) were protective factors. CONCLUSIONS: The introduction of complementary food at an age of <4 months, maternal food allergy, and antibiotic exposure during pregnancy are risk factors for CMPA in infants.
Assuntos
Hipersensibilidade a Leite , Animais , Bovinos , China , Feminino , Humanos , Lactente , Proteínas do Leite , Gravidez , Fatores de Risco , Inquéritos e QuestionáriosRESUMO
Multiple studies demonstrated that sepsis is a life-threatening state of organ dysfunction caused by infection and can induce neuroinflammation and cognitive impairment. The aim of this study was to evaluate the protective effects of attractylone (Atr) on sepsis-associated encephalopathy (SAE) and cognitive dysfunction. Moreover, we studied the underlying molecular mechanisms. We used an LPS-induced sepsis mouse model and evaluated the cognitive function with the Morris water maze and open field test. Neuronal damage in the hippocampus was assessed by immunohistochemical analysis. BV2 cells were used to identify the protective mechanism of Atr. The result showed that Atr attenuated LPS-induced cognitive impairment, neural apoptosis, inflammatory factors, and microglial activation. The in vitro experiment showed that Atr promoted silent information regulator 1 (SIRT1) expression and suppressed NFκB expression. Downregulation of SIRT1 reversed the protective effect of Atr in the LPS condition. Moreover, Atr-induced SIRT1 expression promoted BV2 from LPS-induced M1 to M2 phenotype. Taken together, these results indicated that Atr was a potential therapeutic agent for SAE and cognitive dysfunction.
RESUMO
Since 2010, continual outbreaks of highly virulent variants of porcine epidemic diarrhea virus (PEDV) belonging to genotype GII have led to serious economic losses for the Chinese swine industry. To better understand the biological characteristics and pathogenicity of the current prevalent Chinese PEDV field strains, in this study, a highly virulent Chinese genotype GIIa PEDV strain, CH/HBXT/2018, was isolated and serially propagated using Vero cells. Sequencing and phylogenetic analysis showed that strain CH/HBXT/2018 contained novel insertion and deletion mutations in the S gene region relative to the classical strain and belonged to the genotype GIIa, similar to other recently isolated PEDV strains from China and the United States. Pig infection studies indicated that the CH/HBXT/2018 strain was highly virulent in suckling piglets, and the median pig diarrhea dose (PDD50) was 8.63 log10PDD50/3 mL at 7 days postinfection (DPI). The results of the present study are important for future PEDV challenge studies and the development of new PEDV vaccines based on prevalent field strains for the prevention and control of PED in China.
Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Animais , Linhagem Celular , China , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Surtos de Doenças , Genótipo , Mutagênese Insercional/genética , Filogenia , Vírus da Diarreia Epidêmica Suína/classificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Deleção de Sequência/genética , Suínos , Doenças dos Suínos/virologia , Células Vero , Vacinas Virais/imunologia , Virulência/genéticaRESUMO
BACKGROUND The pathogenesis of chemotherapy-induced neuropathy, a dose-dependent adverse effect of cisplatin, involves mitochondrial dysfunction. PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy removes damaged mitochondria under various pathological conditions. The objective of this study was to determine mitophagy status and its effects on mitochondrial function and neuronal cell damage after cisplatin treatment using an in vitro model of cisplatin-induced neurotoxicity. MATERIAL AND METHODS PC12 cells were transfected with Parkin or Parkin siRNA using lentiviral particles and Lipofectamine 3000™, respectively, and then were exposed to 10 µM cisplatin. The expression of autophagic proteins was measured by Western blot analysis. Mitophagy in PC12 cells was detected by confocal microscopy analysis of mitochondria-lysosomes colocalization and autophagic flux. The effects of PINK1/Parkin-mediated mitophagy on cisplatin-induced neurotoxicity were assessed via mitochondrial function, neuritic length, nuclear diameter, and apoptosis. RESULTS Cisplatin activated PINK1/Parkin-mediated mitophagy in PC12 cells. Autophagic flux analysis revealed that cisplatin inhibits the late stage of the autophagic process. The knockdown of Parkin suppressed cisplatin-induced mitophagy, aggravating cisplatin-induced depolarization of mitochondria, cellular ATP deficits, reactive oxygen species outburst, neuritic shortening, nuclear diameter reduction, and apoptosis, while Parkin overexpression enhanced mitophagy and reversed these effects. CONCLUSIONS PINK1/Parkin-regulated mitophagy can protect against cisplatin-related neurotoxicity, suggesting therapeutic enhancement of mitophagy as a potential intervention for cisplatin-induced peripheral neuropathies. The interference of cisplatin with autophagosome-lysosome fusion may be partly responsible for cisplatin-induced neurotoxicity.