Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 194: 3-15, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38844061

RESUMO

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.


Assuntos
DNA Glicosilases , Cardiomiopatias Diabéticas , Resistência à Insulina , Animais , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/deficiência , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Camundongos , Masculino , PPAR gama/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Glicólise , Humanos , Camundongos Endogâmicos C57BL
2.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607333

RESUMO

Unraveling the mechanism of chirality transfer across length scales is crucial to the rational development of functional materials with hierarchical chirality. The key obstacle is the lack of structural information, especially at the mesoscopic level. We report herein the structural identification of helical covalent organic frameworks (heliCOFs) with hierarchical chirality, which integrate molecular chirality, channel chirality, and morphology chirality into one crystalline entity. Specifically, benefiting from the highly ordered structure of heliCOFs, the existence of chiral channels at the mesoscopic level has been confirmed by electron crystallography, and the handedness of these chiral channels has been directly determined through the stereopair imaging technique. Accordingly, the chirality transfer in heliCOFs from microscopic to macroscopic levels could be rationalized with a layer-rotating model that has been supported by both crystal structure analysis and theoretical calculations. Observation of chiral channels in heliCOFs not only provides unprecedented data for the understanding of the chirality transfer process but also sheds new light on the rational construction of highly ordered polymeric materials with hierarchical chirality.

3.
J Nutr ; 154(2): 369-380, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122845

RESUMO

BACKGROUND: There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES: This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS: In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS: In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS: The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.


Assuntos
Microbioma Gastrointestinal , Selênio , Masculino , Animais , Testículo/metabolismo , Selênio/metabolismo , Galinhas/metabolismo , Saúde Reprodutiva , Motilidade dos Espermatozoides , Sementes , Oxirredução , Dieta , Inflamação/metabolismo , Apoptose , Proliferação de Células , Suplementos Nutricionais
4.
Inorg Chem ; 63(11): 4813-4818, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38450622

RESUMO

The processability and sustainability of proton conductors are two important indicators of their application. Here, MIL-91(Al) with an intrinsic proton conduction framework originating from protonated phosphonate groups was cross-linked with poly(vinyl alcohol) (PVA) to obtain MIL-91(Al) aerogel through freeze-drying. This simple and inexpensive strategy not only facilitated the processing of MIL-91(Al) powder but also resulted in a molded MIL-91(Al) aerogel having a high proton conductivity of 1.02 × 10-2 S cm-1 at 70 °C and 100% relative humidity. Furthermore, MIL-91(Al) aerogel was recyclable and reusable, in line with the principles of environmental protection and sustainability. To the best of our knowledge, this is the first example of using a metal-organic framework aerogel as a proton conductor, which may develop a new model system in this field.

5.
Food Microbiol ; 120: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431318

RESUMO

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Assuntos
Carne , Peptídeo Hidrolases , Pseudomonas , Animais , Bovinos , Espécies Reativas de Oxigênio , Carne/microbiologia , Ferritinas/genética , Peptídeos
6.
J Adv Nurs ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422154

RESUMO

AIMS: Population aging is a challenge that the whole world is facing, especially in China. This study aims to investigate the current distribution status of nursing homes in China using spatial epidemiology methods. DESIGN: Cross-sectional study in China. METHODS: The data were obtained from the Integrated Civil Affairs Government Service Platform 'China County Statistical Yearbook' for 2020 and the 'China City Statistical Yearbook' for 2020. Using global Moran's index to test the clustering of nursing homes, inter-group and intra-group Theil index was utilised to differentiate the sources of differences. The coupling coordination analysis was conducted to explore the coordination. Geographically weighted regression was utilised to investigate the impact of economic development and aging on nursing home resources. All analyses were conducted by Arcgis 10.8 and R Studio 4.3.2. RESULTS: Global Moran's index indicated that the distribution of nursing homes in China exhibited clustering. The Theil index values for institutions and beds at the national county were 0.32450 and 0.30675. However, upon comparing provinces and regions, it was found that the differences across the country mainly stem from within provinces (contribution rate: institutions 65.0%; beds 73.0%) and within regions (contribution rate: institutions 99.0%; beds 91.0%). The majority of districts and counties had a coupling coordination index of institutions and bed numbers, both of which were < 0.5. CONCLUSION: The development of nursing home resources in China has been rapid, generally presenting a balanced state, but further optimisation is needed. This study established a foundation for the targeted distribution of essential public services, focusing on nursing home healthcare resources tailored to the needs of older persons. IMPLICATIONS: The study underscored the urgent need for targeted elderly care policies, emphasising the optimisation of resource distribution to enhance the overall quality of care provided to the aging population. NO PATIENTS OR PUBLIC CONTRIBUTION: The study did not involve humans.

7.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946402

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Assuntos
Biologia Computacional , Glomerulonefrite , Células Mesangiais , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Animais , Camundongos , Células Mesangiais/metabolismo , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Análise de Sequência de RNA , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Mapas de Interação de Proteínas/genética , Doença Crônica , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica , Modelos Animais de Doenças
8.
J Pediatr Nurs ; 77: e511-e519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38782669

RESUMO

PURPOSE: There is currently a lack of understanding of children's experience in the pediatric intensive care unit (PICU) environment. Additionally, pediatric patients may experience post-PICU syndrome following discharge. Thus, we aimed to adapt and evaluate the psychometric properties of a tool specifically for use with children in the PICU. DESIGN AND METHODS: According to Brislin's Model, the Intensive Care Unit Environment Stress Scale (ICUESS) was translated both forward and backward and adapted cross-culturally. A total of 210 PICU patients were selected from four hospitals in XXX to analyze the final translated version of the questionnaire, the Pediatric Intensive Care Unit Environmental Stress Scale (PICUESS). Content validity, exploratory factor analysis (EFA) and Confirmatory Factor Analysis (CFA) were used to assess the validity, while reliability was assessed using Cronbach's alpha and split-half reliability analysis. RESULTS: For PICUESS, seven of 42 items were modified. Content validity was high (overall = 0.96, item validity = 0.8 to 1.0). Exploratory factor analysis revealed eight common factors (Kaiser-Meyer-Olkin = 0.857, significant Bartlett's test). The results of the CFA indicate that the scale model fits well across the 8 factors. The entire scale demonstrated excellent internal consistency (Cronbach's alpha = 0.934). The overall split-half reliability was 0.935. CONCLUSIONS: The Chinese version of PICUESS demonstrates good reliability and validity, making it suitable for assessing pediatric patients' perceptions of the PICU environment. PRACTICE IMPLICATIONS: The PICUESS can assist healthcare professionals in providing personalized environment care for PICU patients. It has the potential to serve as a tool for further testing and international comparisons of pediatric patients' perceptions of the PICU environment.


Assuntos
Unidades de Terapia Intensiva Pediátrica , Psicometria , Estresse Psicológico , Traduções , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Criança , Inquéritos e Questionários/normas , China , Pré-Escolar , Comparação Transcultural , Análise Fatorial
9.
Int J Food Sci Nutr ; : 1-13, 2024 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-39463045

RESUMO

OBJECTIVE: To explore the differences in ultra-processed food (UPF) consumption across different socioeconomic status (SES) levels. METHODS: Data on UPF consumption (grams/day) were derived from the 2017-2018 National Health and Nutrition Examination Survey. The analysis controlled for age, marital status, race, and sex. A restricted cubic spline (RCS) model was applied to examine the nonlinear response curve. RESULTS: UPF consumption increased with higher poverty income ratio (PIR), the ratio of household income to the established poverty line. Compared to the low PIR group, the medium group showed a non-significant increase (ß = 34.23[95%CI: -28.81, 97.28], p = 0.287), while the high group exhibited a significant increase (ß = 115.15[95%CI: 43.53, 186.76], p = 0.002). A linear positive correlation was observed in RCS analysis (p-nonlinear = 0.166, p-overall < 0.001). CONCLUSIONS: The study highlights that higher SES is associated with greater consumption of UPF in the US. The findings suggest that policy interventions should take SES into consideration.

10.
J Sci Food Agric ; 104(12): 7688-7703, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924063

RESUMO

BACKGROUND: Although microorganisms are the main cause of spoilage in prepared beef steaks, very few deep spoilage mechanisms have been reported so far. Aiming to unravel the mechanisms during 12 days of storage at 4 °C affecting the quality of prepared beef steak, the present study investigated the changes in microbial dynamic community using a combined high-throughput sequencing combined and bioinformatics. In addition, gas chromatography-mass spectrometry combined with multivariate statistical analysis was utilized to identify marker candidates for prepared steaks. Furthermore, cloud platform analysis was applied to determine prepared beef steak spoilage, including the relationship between microbiological and physicochemical indicators and volatile compounds. RESULTS: The results showed that the dominant groups of Pseudomonas, Brochothrix thermosphacta, Lactobacillus and Lactococcus caused the spoilage of prepared beef steak, which are strongly associated with significant changes in physicochemical properties and volatile organic compounds (furan-2-pentyl-, pentanal, 1-octanol, 1-nonanol and dimethyl sulfide). Metabolic pathways were proposed, among which lipid metabolism and amino acid metabolism were most abundant. CONCLUSION: The present study is helpful with respect to further understanding the relationship between spoilage microorganisms and the quality of prepared beef steak, and provides a reference for investigating the spoilage mechanism of dominant spoilage bacteria and how to extend the shelf life of meat products. © 2024 Society of Chemical Industry.


Assuntos
Bactérias , Biologia Computacional , Compostos Orgânicos Voláteis , Bovinos , Animais , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microbiologia de Alimentos , Armazenamento de Alimentos , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Lactobacillus/metabolismo , Refrigeração , Brochothrix/metabolismo , Brochothrix/crescimento & desenvolvimento , Brochothrix/isolamento & purificação , Lactococcus , Carne Vermelha/microbiologia , Carne Vermelha/análise
11.
J Sci Food Agric ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291490

RESUMO

BACKGROUND: Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS: Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION: Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.

12.
Cytokine ; 162: 156114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603482

RESUMO

Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by infection, trauma, shock, aspiration or drug reaction. The pathogenesis of ARDS is characterized as an unregulated inflammatory storm, which causes endothelial and epithelial layer damage, leading to alveolar fluid accumulation and pulmonary edema. Previous studies have shown the potential role of mesenchymal stem cells (MSC) in combating the inflammatory cascade by increasing the anti-inflammatory mediator interleukin-10 (IL-10). However, the involved mechanisms are unclear. Here we investigated whether a key immunomodulatory regulator, stanniocalcin-1 (STC-1), was secreted by MSC to activate phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)/ mammalian target of rapamycin (mTOR) signaling pathway to increase IL-10 expression in alveolar macrophages. Lipopolysaccharide (LPS)-stimulated alveolar macrophages co-cultured with human umbilical mesenchymal stem cells (HUMSC) secreted high levels of IL-10. HUMSC co-cultured with alveolar macrophages expressed high STC-1 levels and increased PI3K, AKT and mTOR phosphorylation after LPS activation in alveolar macrophages. STC-1 knockdown in HUMSC decreased the phosphorylation of PI3K, AKT and mTOR and suppressed IL-10 expression in alveolar macrophages. Rapamycin (an mTOR inhibitor) reduced IL-10 secretion in alveolar macrophages. These results, together with our previous study and others, indicate that the PI3K/AKT/mTOR pathway is involved in the regulation of IL-10 production by STC-1 secreted by HUMSC in alveolar macrophages.


Assuntos
Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Fatores Imunológicos/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(19): 10414-10421, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350143

RESUMO

The rise of oxygen on the early Earth about 2.4 billion years ago reorganized the redox cycle of harmful metal(loids), including that of arsenic, which doubtlessly imposed substantial barriers to the physiology and diversification of life. Evaluating the adaptive biological responses to these environmental challenges is inherently difficult because of the paucity of fossil records. Here we applied molecular clock analyses to 13 gene families participating in principal pathways of arsenic resistance and cycling, to explore the nature of early arsenic biogeocycles and decipher feedbacks associated with planetary oxygenation. Our results reveal the advent of nascent arsenic resistance systems under the anoxic environment predating the Great Oxidation Event (GOE), with the primary function of detoxifying reduced arsenic compounds that were abundant in Archean environments. To cope with the increased toxicity of oxidized arsenic species that occurred as oxygen built up in Earth's atmosphere, we found that parts of preexisting detoxification systems for trivalent arsenicals were merged with newly emerged pathways that originated via convergent evolution. Further expansion of arsenic resistance systems was made feasible by incorporation of oxygen-dependent enzymatic pathways into the detoxification network. These genetic innovations, together with adaptive responses to other redox-sensitive metals, provided organisms with novel mechanisms for adaption to changes in global biogeocycles that emerged as a consequence of the GOE.


Assuntos
Adaptação Biológica/genética , Arsênio/metabolismo , Oxigênio/metabolismo , Adaptação Biológica/fisiologia , Atmosfera , Evolução Biológica , Planeta Terra , Evolução Planetária , Fósseis , Oxirredução
14.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175493

RESUMO

Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in Zkscan3 knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis. In order to further explore the role of ZKSCAN3 in the transcriptional regulation of autophagic genes in human cancer and non-cancer cells, we generated ZKSCAN3 knockout HK-2 (non-cancer) and Hela (cancer) cells via the CRISPR/Cas9 system and analyzed the differences in gene expression between ZKSCAN3 deleted cells and non-deleted cells through fluorescence quantitative PCR, western blot and transcriptome sequencing, with special attention to the differences in expression of autophagic and lysosomal genes. We found that ZKSCAN3 may be a cancer-related gene involved in cancer progression, but not an essential transcriptional repressor of autophagic or lysosomal genes, as the lacking of ZKSCAN3 cannot significantly promote the expression of autophagic and lysosomal genes.


Assuntos
Autofagia , Regulação da Expressão Gênica , Animais , Camundongos , Humanos , Autofagia/genética , Células HeLa , Lisossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Small ; 18(48): e2205444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36284496

RESUMO

Metal-oxo clusters have emerged as advanced proton conductors with well-defined and tunable structures. Nevertheless, the exploitation of metal-oxo clusters with high and stable proton conductivity over a relatively wide temperature range still remains a great challenge. Herein, three sulfate groups decorated zirconium-oxo clusters (Zr6 , Zr18 , and Zr70 ) as proton conductors are reported, which exhibit ultrahigh bulk proton conductivities of 1.71 × 10-1 , 2.01 × 10-2 , and 3.73 × 10-2  S cm-1 under 70 °C and 98% relative humidity (RH), respectively. Remarkably, Zr6 and Zr70 with multiple sulfate groups as proton hopping sites show ultralow activation energies of 0.22 and 0.18 eV, respectively, and stable bulk conductivities of >10-2  S cm-1 between 30 and 70 °C at 98% RH. Moreover, a time-dependent proton conductivity test reveals that the best performing Zr6 can maintain high proton conductivity up to 15 h with negligible loss at 70 °C and 98% RH, representing one of the best crystalline cluster-based proton conducting materials.

16.
FASEB J ; 35(10): e21885, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478585

RESUMO

In a recently published phase III clinical trial, gemcitabine (GEM) plus cisplatin (DDP) induction chemotherapy significantly improved recurrence-free survival and overall survival and became the standard of care among patients with locoregionally advanced NPC. However, the molecular mechanisms of GEM synergized with DPP in NPC cells remain elucidated. These findings prompt us to explore the effect of the combination between GEM and DDP in NPC cell lines through proliferative phenotype, immunofluorescence, flow cytometry, and western blotting assays. In vitro studies reveal that GEM or DPP treated alone induces cell cycle arrest, promotes cell apoptosis, forces DNA damage response, and GEM synergism with DDP significantly increases the above effects in NPC cells. In vivo studies indicate that GEM or DPP treated alone significantly inhibits the tumor growth and prolongs the survival time of mice injected with SUNE1 cells compared to the control group. Moreover, the mice treated with GEM combined with DDP have smaller tumors and survive longer than those in GEM or DPP treated alone group. In addition, P-gp may be the key molecule that regulates the synergistic effect of gemcitabine and cisplatin. GEM synergizes with DPP to inhibit NPC cell proliferation and tumor growth by inducing cell cycle arrest, cell apoptosis, and DNA damage response, which reveals the mechanisms of combined GEM and DDP induction chemotherapy in improving locoregionally advanced NPC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cisplatino/agonistas , Cisplatino/farmacologia , Desoxicitidina/agonistas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
17.
Inorg Chem ; 61(38): 15166-15174, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36084300

RESUMO

Postsynthetic modification (PSM) of the metal-organic framework (MOF) has been demonstrated to be an effective strategy to enhance performance. In this particular work, the anion framework Mn-MOF {[Mn3O(H2O)3(HTC)]2-} (HTC6- = (5'-(3,5-dicarboxyphenyl)-[1,1':3',1″-terphenyl]-3,3″,5,5″-tetracarboxylate] was obtained, and NH2(CH3)2+ ions were filled within the pores to balance the charge. In order to release the internal pores of Mn-MOF, the trivalent Fe(III) was introduced instead of Mn(II) nodes, resulting in the porous Mn1-xFex-MOF, and the NH2(CH3)2+ ions were simultaneously deported from the pores. The content of Fe(III) in Mn1-xFex-MOF was highly dependent on the concentration of Fe(III) solution, and the maximum could be up to Mn0.05Fe0.95-MOF with a BET surface area of 1209.457 m2 g-1. Compared to the amorphization of dense Mn-MOF at 0.8 GPa in a diamond anvil cell, the mechanical stability of porous Mn0.05Fe0.95-MOF has been dramatically enhanced, and the framework integrity could be maintained up to 16.5 GPa. The proton conductivity for the Mn1-xFex-MOF series was also investigated, where Mn0.93Fe0.07-MOF showed the best performance of 1.47 × 10-2 S cm-1 under 70 °C and 98% RH due to the onset of reversed charge from the anionic framework to cationic framework and the formation of the most compact hydrogen bonding net. This work has not only provided an example for the PSM strategy but also illustrated that the versatile functionalities of MOF materials were mainly ascribed to the tunable porosity.

18.
Mol Cancer ; 20(1): 14, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430876

RESUMO

Currently, there is no strong evidence of the well-established biomarkers for immune checkpoint inhibitors (ICIs) in nasopharyngeal carcinoma (NPC). Here, we aimed to reveal the heterogeneity of tumour microenvironment (TME) through virtual microdissection of gene expression profiles. An immune-enriched subtype was identified in 38% (43/113) of patients, which was characterized by significant enrichment of immune cells or immune responses. The remaining patients were therefore classified as a non-Immune Subtype (non-IS), which exhibited highly proliferative features. Then we identified a tumour immune evasion state within the immune-enriched subtype (18/43, 42%), in which high expression of exclusion- and dysfunction-related signatures was observed. These subgroups were designated the Evaded and Active Immune Subtype (E-IS and A-IS), respectively. We further demonstrated that A-IS predicted favourable survival and improved ICI response as compared to E-IS and non-IS. In summary, this study introduces the novel immune subtypes and demonstrates their feasibility in tailoring immunotherapeutic strategies.


Assuntos
Heterogeneidade Genética , Imunoterapia , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/terapia , Microambiente Tumoral , Estudos de Coortes , Genoma Humano , Humanos , Carcinoma Nasofaríngeo/genética , Prognóstico , Reprodutibilidade dos Testes , Microambiente Tumoral/genética
19.
Environ Sci Technol ; 55(5): 3430-3441, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600162

RESUMO

Electrotrophs play an important role in biogeochemical cycles, but the effects of long-term fertilization on electrotrophic communities in paddy soils remain unclear. Here, we explored the responses of electrotrophic communities in paddy soil-based microcosms to different long-term fertilization practices using microbial electrosynthesis systems (MESs), high-throughput quantitative PCR, and 16s rRNA gene-based Illumina sequencing techniques. Compared to the case in the unfertilized soil (CK), applications of only manure (M); only chemical nitrogen, phosphorous, and potassium fertilizers (NPK); and M plus NPK (MNPK) clearly changed the electrotrophic bacterial community structure. The Streptomyces genus of the Actinobacteria phylum was the dominant electrotroph in the CK, M, and MNPK soils. The latter two soils also favored Truepera of Deinococcus-Thermus or Arenimonas and Thioalkalispira of Proteobacteria. Furthermore, Pseudomonas of Proteobacteria and Bacillus of Firmicutes were major electrotrophs in the NPK soil. These electrotrophs consumed biocathodic currents coupled with nitrate reduction and recovered 18-38% of electrons via dissimilatory nitrate reduction to ammonium (DNRA). The increased abundances of the nrfA gene for DNRA induced by electrical potential further supported that the electrotrophs enhanced DNRA for all soils. These expand our knowledge about the diversity of electrotrophs and their roles in N cycle in paddy soils and highlight the importance of fertilization in shaping electrotrophic communities.


Assuntos
Microbiota , Oryza , Fertilização , Fertilizantes/análise , Nitrogênio/análise , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
20.
Appl Microbiol Biotechnol ; 105(21-22): 8265-8276, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34661708

RESUMO

In the present work, the biotransformation of ginsenosides in white ginseng roots was innovatively investigated using the aerobic fermentation by the co-cultivation of Bacillus subtilis and Trichoderma reesei. It is found that in the co-cultivation mode, the optimal nitrogen source was corn steep liquor, and the loading of ginseng powder and inoculation proportion of B. subtilis and T. reesei were 15 g/L and 1:4, respectively. The total ginsenoside yield and production of minor ginsenosides in the co-cultivation mode obviously enhanced in comparison to the monoculture mode. Meanwhile, the maximal total ginsenoside yield of 21.79% and high hydrolase activities were achieved using the staged inoculation at the inoculation proportion of 1:4 in the co-cultivation mode, the production of minor ginsenosides such as Rg3 and Rh1, Rh2 was significantly strengthened, and the pharmacological activities of the fermented solution obviously improved. The enhancement of ginsenoside transformation can be mainly attributed to hydrolysis of the produced hydrolases and metabolism of two probiotics. This result clearly reveals that using the staged inoculation in co-cultivation fermentation mode was favor of the ginsenoside biotransformation in ginseng due to non-synchronous cell growth and different metabolic pathways of both probiotics. This work can provide a novel method for enhancing ginsenoside transformation of ginseng.Key points• Co-cultivation fermentation significantly promoted ginsenoside biotransformation.• The staged inoculation in co-culture mode was an optimal operation method.• The pharmacological activity of the co-cultured solution was significantly enhanced.


Assuntos
Ginsenosídeos , Panax , Trichoderma , Bacillus subtilis , Biotransformação , Hypocreales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA