RESUMO
Identifying efficient and accurate optimization algorithms is a long-desired goal for the scientific community. At present, a combination of evolutionary and deep-learning methods is widely used for optimization. In this paper, we demonstrate three cases involving different physics and conclude that no matter how accurate a deep-learning model is for a single, specific problem, a simple combination of evolutionary and deep-learning methods cannot achieve the desired optimization because of the intrinsic nature of the evolutionary method. We begin by using a physics-supervised deep-learning optimization algorithm (PSDLO) to supervise the results from the deep-learning model. We then intervene in the evolutionary process to eventually achieve simultaneous accuracy and efficiency. PSDLO is successfully demonstrated using both sufficient and insufficient datasets. PSDLO offers a perspective for solving optimization problems and can tackle complex science and engineering problems having many features. This approach to optimization algorithms holds tremendous potential for application in real-world engineering domains.
RESUMO
Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.
Assuntos
Ansiedade , Vias Neurais , Córtex Pré-Frontal , Estresse Psicológico , Animais , Ansiedade/psicologia , Ansiedade/fisiopatologia , Masculino , Estresse Psicológico/psicologia , Estresse Psicológico/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/fisiologia , Camundongos , Medo/fisiologia , Medo/psicologia , Camundongos Endogâmicos C57BL , Área Tegmentar Ventral/fisiopatologia , Tálamo/fisiopatologia , Núcleo Mediodorsal do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/fisiopatologiaRESUMO
Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.
Assuntos
Vírus da Febre Suína Clássica , Indolamina-Pirrol 2,3,-Dioxigenase , NF-kappa B , Transdução de Sinais , Triptofano , Replicação Viral , Triptofano/metabolismo , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , NF-kappa B/metabolismo , Suínos , Vírus da Febre Suína Clássica/fisiologia , Linhagem Celular , Cinurenina/metabolismo , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , AutofagiaRESUMO
The expansion of GGC repeats within NOTCH2NLC leads to the translation of the uN2CpolyG protein, the primary pathogenic factor in neuronal intranuclear inclusion disease (NIID). This study aims to explore the deposition of uN2CpolyG as an amyloid in the vessel wall, leading to uN2CpolyG cerebral amyloid angiopathy (CAA)-related cerebral microbleeds (CMBs). A total of 97 patients with genetically confirmed NIID were enrolled in this study. We analyzed the presence of CMBs using susceptibility-weighted imaging sequences and compared general clinical information, cerebrovascular risk factors, stroke history, antiplatelet medication use, and MRI features between NIID patients with and without CMBs. We further performed hematoxylin and eosin (H&E), Perl's, Congo red, and Thioflavin S staining, ubiquitin, p62 and uN2CpolyG immunostaining on brain tissue obtained from four NIID patients. A total of 354 CMBs were detected among 41 patients with NIID, with nearly half located in the deep brain, one-third in the lobes, and approximately 20% in the infratentorial area. No significant differences in cerebrovascular disease risk factors or history of antiplatelet drug use were observed between patients with and without CMBs. However, patients with CMBs suffered a higher incidence of previous ischemic and hemorrhagic stroke events. This group also had a higher incidence of recent subcortical infarcts and a higher proportion of white matter lesions in the external capsule and temporal pole. Conversely, patients without CMBs showed higher detection of high signals at the corticomedullary junction on diffusion-weighted imaging and more pronounced brain atrophy. H&E staining showed blood vessel leakage and hemosiderin-laden macrophage clusters, and Prussian blue staining revealed brain tissue iron deposition. CMBs occurred more frequently in small vessels lacking intranuclear inclusions, and extensive degeneration of endothelial cells and smooth muscle fibres was observed mainly in vessels lacking inclusions. Congo red-positive amyloid deposition was observed in the cerebral vessels of NIID patients, with disordered filamentous fibres appearing under an electron microscope. Additionally, the co-localization of Thioflavin S-labeled amyloid and uN2CpolyG protein in the cerebral vascular walls of NIID patients further suggested that uN2CpolyG is the main pathogenic protein in this form of amyloid angiopathy. In conclusion, we reviewed patients with GGC repeat expansion of NOTCH2NLC from a novel perspective, providing initial clinical, neuroimaging, and pathological evidence suggesting that uN2CpolyG may contribute to a distinct type of CAA.
RESUMO
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Assuntos
Astrócitos , Depressão , Camundongos Transgênicos , Córtex Pré-Frontal , Animais , Astrócitos/metabolismo , Córtex Pré-Frontal/metabolismo , Masculino , Depressão/genética , Depressão/patologia , Feminino , Camundongos Endogâmicos C57BL , Camundongos , Modelos Animais de Doenças , Restrição Física , Ácido 2-Aminoadípico , Estresse Psicológico/patologia , Estresse Psicológico/metabolismoRESUMO
Lymph node status is a key factor in determining stage, treatment, and prognosis in cancers. Small lymph nodes in fat-rich gastrointestinal and breast cancer specimens are easily missed in conventional sampling methods. This study examined the effectiveness of the degreasing pretreatment with dimethyl sulfoxide (DMSO) in lymph node detection and its impact on the analysis of clinical treatment-related proteins and molecules. Thirty-three cases of gastrointestinal cancer specimens from radical gastrectomy and 63 cases of breast cancer specimens from modified radical mastectomy were included. After routine sampling of lymph nodes, the specimens were immersed in DMSO for 30 minutes for defatting. We assessed changes in the number of detected lymph nodes and pN staging in 33 gastrointestinal cancer specimens and 37 breast cancer specimens. In addition, we analyzed histologic characteristics, Masson trichrome special staining, and immunohistochemistry (gastrointestinal cancer: MMR, HER2, and PD-L1; breast cancer: ER, PR, AR, HER2, Ki-67, and PD-L1). Molecular status was evaluated for colorectal cancer (KRAS, NRAS, BRAF, and microsatellite instability) and breast cancer (HER2) in gastrointestinal cancer specimens and the remaining 26 breast cancer specimens. Compared with conventional sampling, DMSO pretreatment increased the detection rate of small lymph nodes (gastrointestinal cancer: P < .001; breast cancer: P < .001) and improved pN staging in 1 case each of gastric cancer, colon cancer, and rectal cancer (3/33; 9.1%). No significant difference in the morphology, special staining, protein, and molecular status of cancer tissue after DMSO treatment was found. Based on these results and our institutional experience, we recommend incorporating DMSO degreasing pretreatment into clinical pathologic sampling practices.
Assuntos
Neoplasias da Mama , Dimetil Sulfóxido , Neoplasias Gastrointestinais , Imuno-Histoquímica , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Dimetil Sulfóxido/farmacologia , Idoso , Adulto , Masculino , Linfonodos/patologia , Linfonodos/metabolismo , Manejo de Espécimes/métodos , Metástase Linfática , Idoso de 80 Anos ou maisRESUMO
MAIN CONCLUSION: Overexpression of MdLBD3 in Arabidopsis reduced sensitivity to salt and drought stresses and was instrumental in promoting early flowering. Salt and drought stresses have serious effects on plant growth. LATERAL ORGAN BOUNDARY DOMAIN (LBD) proteins are a plant-specific transcription factors (TFs) family and play important roles in plants in resisting to abiotic stress. However, about the function of LBDs in apple and other woody plants is little known. In this study, protein sequences of the LBD family TFs in apples were identified which contained conserved LOB domains. The qRT-PCR analysis showed that the MdLBD3 gene was widely expressed in various tissues and organs. The subcellular localization assay showed that the MdLBD3 protein was localized in the nucleus. Ectopic expression of MdLBD3 in Arabidopsis positively regulated its salt and drought resistance, and promoted early flowering. Collectively, these results showed that MdLBD3 improved the abiotic stress resistance, plant growth and development. Overall, this study provided a new gene for breeding that can increase the abiotic stress tolerance in apple.
Assuntos
Arabidopsis , Malus , Fatores de Transcrição , Secas , Melhoramento Vegetal , Estresse Salino , Clonagem MolecularRESUMO
The restriction of the field of view (FOV) enlargement and spatial resolution increase during optical monitoring was investigated. Traditional optical instruments usually have a fixed FOV in one test; thus, they have low accuracy for small samples under large motions/deformations. To improve the spatial resolution in a relatively large FOV of an optical instrument, a multiple-view 3D digital image correlation (3D-DIC) method based on pseudo-overlapped imaging is proposed. Using a set of optical components, pseudo-overlapped imaging can image two FOVs with the same camera, which converts one pair of cameras to four virtual cameras. Each virtual camera has the same whole pixels. Therefore, compared with the conventional 3D-DIC system, the proposed method simultaneously enlarges FOVs and increases spatial resolutions by two times. The efficiency, accuracy, and feasibility of the technique were validated through experiments.
RESUMO
Signaling desensitization is key to limiting signal transduction duration and intensity. Signal transducer and activator of transcription 1 (STAT1) can mediate type II interferon (IFNγ)-induced immune responses, which are enhanced and inhibited by STAT1 phosphorylation and sumoylation, respectively. Here, we identified an N-MYC interacting protein, NMI, which can enhance STAT1 phosphorylation and STAT1-mediated IFNγ immune responses by binding and sequestering the E2 SUMO conjugation enzyme, UBC9, and blocking STAT1 sumoylation. NMI facilitates UBC9 nucleus-to-cytoplasm translocation in response to IFNγ, thereby inhibiting STAT1 sumoylation. STAT1 phosphorylation at Y701 and sumoylation at K703 are mutually exclusive modifications that regulate IFNγ-dependent transcriptional responses. NMI could not alter the phosphorylation level of sumoylation-deficient STAT1 after IFNγ treatment. Thus, IFNγ signaling is modulated by NMI through sequestration of UBC9 in the cytoplasm, leading to inhibition of STAT1 sumoylation. Hence, NMI functions as a switch for STAT1 activation/inactivation cycles by modulating an IFNγ-induced desensitization mechanism.
Assuntos
Interferon gama , Sumoilação , Interferon gama/metabolismo , Transdução de Sinais , Fosforilação , Fator de Transcrição STAT1/genéticaRESUMO
Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2+ pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.
Assuntos
Células Piramidais , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Receptores de Dopamina D2/metabolismo , Células Piramidais/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleo Accumbens/fisiologia , Comportamento SocialRESUMO
The aim of the present study was to define an initial angle called ß and to assess its diagnostic value for identifying poor-quality maneuvers in spirometry testing in children. Furthermore, its predictive equation or normal value was explored. Children aged 4-14 years with respiratory symptoms who underwent spirometry were enrolled. Based on the efforts labeled during maneuvering and the quality control criteria of the guidelines, children were categorized into good-quality and poor-quality groups. According to ventilatory impairment, children in the good-quality group were divided into three subgroups: normal, restricted, and obstructed. Angle ß was the angle between the line from the expiratory apex to the origin of coordinates and the x-axis of the maximal expiratory flow-volume (MEFV) curve. Demographic characteristics, angle ß, and other spirometric parameters were compared among groups. The diagnostic values of angle ß, forced expiratory time (FET), and their combination were assessed using receiver operating characteristic curves. Data from 258 children in the good-quality group and 702 healthy children in our previous study were used to further explore the predictive equation or normal value of angle ß. The poor-quality group exhibited a significantly smaller angle ß (76.44° vs. 79.36°; P < 0.001), significantly lower peak expiratory flow (PEF), FET, and effective FET (ETe), and significantly higher expiratory volume at peak flow rate (FEV-PEF) and ratio of extrapolated volume and forced vital capacity (EV/FVC) than the good-quality group. There was no significant difference in angle ß among the normal, restricted, and obstructed groups. Logistic regression analysis revealed that smaller angle ß and FET values indicated poor-quality MEFV curves. The combination of angle ß < 74.58° and FET < 4.91 s had a significantly larger area under the curve than either one alone. The normal value of angle ß of children aged 4-14 years was 78.40 ± 0.12°. Conclusions: Angle ß contributes to the quality control evaluation of spirometry in children. Both angle ß < 74.58° and FET < 4.91 s are predictors of poor-quality MEFV curves, while their combination offers the highest diagnostic value. What is Known: ⢠A slow start is one of the leading causes of poor-quality maximal expiratory flow-volume (MEFV) curves, which is a particularly prominent issue among children due to limited cooperation, especially those younger than 6 years old. ⢠It is relatively difficult to differentiate between ventilatory dysfunction and poor cooperation when a slow start occurs in children; therefore, there is an urgent need for an objective indicator that is unaffected by ventilatory impairment to evaluate quality control of spirometry. What is New: ⢠The initial angle ß, which was introduced at the ascending limb of the MEFV curve in the present study, has a certain diagnostic value for poor-quality MEFV curves in children. ⢠Angle ß < 74.58° is a predictor of poor-quality MEFV curves, and its combination with FET < 4.91 s offers a higher diagnostic value.
Assuntos
Curvas de Fluxo-Volume Expiratório Máximo , Criança , Humanos , Espirometria , Capacidade Vital , Testes de Função Respiratória , Curva ROC , Volume Expiratório Forçado , PirinaRESUMO
The storage and transmission of videos at high spatial resolution remain a great challenge in image-based optical techniques. The uncertainty of digital image correlation (DIC) was assessed following speckle video compression under High Efficiency Video Coding (HEVC/H.265). First, the evaluation criterion for the DIC accuracy affected by compression was provided. The stability of H.265 video compression in DIC was studied considering different compressed frames under different target quantization parameters (QPs) and compression ratios (CRs). The deformation uncertainty of the DIC itself as affected by H.265 video compression was further investigated through uniform translation and non-uniform sinusoidal deformation performance. Moreover, the optimized digital speckle pattern (DSP) was re-evaluated considering video compression-induced uncertainty. DSPs with parameters of different diameters and randomness were compressed using various QPs and CRs. In addition, DSP evaluation was performed under both translation and non-homogeneous deformation conditions. The feasibility of the re-optimized DSP under H.265 video compression was validated using a defective bending beam, and DSP videos with a speckle size of 8 pixels reached a high CR within an acceptable margin of error.
RESUMO
BACKGROUND: This study explores whether the impact of environmental factors (community services usage, CSU) on geriatric depression is mediated by psychological resilience and moderated by the COMT (catechol-O-methyltransferase) gene val158met polymorphism. METHODS: The data consists of 13,512 entries from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) collected in the years 2008, 2011, 2014, and 2018. The study employed a Random Intercept Cross-Lagged Panel Model (RI-CLPM) to examine the relationship between CSU and geriatric depression, including the mediating effect of psychological resilience and the moderating role of the comt gene val158met gene polymorphism in this relationship. RESULTS: Lower CSU at earlier assessments were significantly associated with more severe geriatric depression in subsequent evaluations.Psychological resilience was found to partially mediate the relationship between CSU and depression.Differential impacts were observed among various gene genotypes; specifically, the val genotype demonstrated a significantly greater influence of CSU on subsequent psychological resilience and on subsequent depression compared to the met genotype. CONCLUSION: Enhancement in CSU can predict subsequent geriatric depression. The relationship between the CSU and depression can be mediated by psychological resilience, with genetics modulating the pathway from CSU through psychological resilience to depression. Multidisciplinary interventions focused on enhancing community service quality, boosting psychological resilience, and mitigating depression are likely to benefit the older adults's emotional and psychological well-being.
Assuntos
Depressão , Resiliência Psicológica , Humanos , Masculino , Feminino , Idoso , Seguimentos , Depressão/terapia , Depressão/psicologia , Depressão/epidemiologia , Idoso de 80 Anos ou mais , Catecol O-Metiltransferase/genética , Estudos Longitudinais , Serviços de Saúde Comunitária/métodos , China/epidemiologiaRESUMO
Aplasia cutis congenita (ACC) is a congenital disorder that can be classified into nine types, with Type I ACC being the most common. Type V ACC associated with fetus papyraceus is a rare subtype of ACC. We report the case of a Type V ACC in a male newborn with extensive abdominal skin defects. The patient received conservative treatment using hydrogel foam and silicone foam dressings. Approximately five weeks later, the patient was discharged when more than 60% of the skin had completed epithelialization. After discharge from West China Second University Hospital, Chengdu , the patient continued to be followed up regularly at the Burns and Plastic Surgery Clinic at local hospital in Gansu. We followed up the child by telephone. After 4 months of follow-up, scar tissue formation was observed in the trunk area. The infant is 2 years and 5 months old now, physical examination did not reveal any organ problems.
Assuntos
Tratamento Conservador , Displasia Ectodérmica , Humanos , Masculino , Displasia Ectodérmica/terapia , Recém-Nascido , BandagensRESUMO
Efferocytosis is the process by which phagocytes recognize, engulf, and digest (or clear) apoptotic cells during development. Impaired efferocytosis is associated with developmental defects and autoimmune diseases. In Drosophila melanogaster, recognition of apoptotic cells requires phagocyte surface receptors, including the scavenger receptor CD36-related protein, Croquemort (Crq, encoded by crq). In fact, Crq expression is upregulated in the presence of apoptotic cells, as well as in response to excessive apoptosis. Here, we identified a novel gene bfc (booster for croquemort), which plays a role in efferocytosis, specifically the regulation of the crq expression. We found that Bfc protein interacts with the zinc finger domain of the GATA transcription factor Serpent (Srp), to enhance its direct binding to the crq promoter; thus, they function together in regulating crq expression and efferocytosis. Overall, we show that Bfc serves as a Srp co-factor to upregulate the transcription of the crq encoded receptor, and consequently boosts macrophage efferocytosis in response to excessive apoptosis. Therefore, this study clarifies how phagocytes integrate apoptotic cell signals to mediate efferocytosis.
Assuntos
Proteínas de Drosophila , Fatores de Transcrição GATA , Fagócitos , Fagocitose , Receptores Depuradores , Animais , Apoptose/genética , Antígenos CD36/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/metabolismo , Fagócitos/metabolismo , Fagocitose/genética , Receptores de Superfície Celular/genética , Receptores Depuradores/genéticaRESUMO
Hazel leaf, a by-product of hazelnuts, is commonly used in traditional folk medicine in Portugal, Sweden, Iran and other regions for properties such as vascular protection, anti-bleeding, anti-edema, anti-infection, and pain relief. Based on our previous studies, the polyphenol extract from hazel leaf was identified and quantified via HPLC fingerprint. The contents of nine compounds including kaempferol, chlorogenic acid, myricetin, caffeic acid, p-coumaric acid, resveratrol, luteolin, gallic acid and ellagic acid in hazel leaf polyphenol extract (ZP) were preliminary calculated, among which kaempferol was the highest with 221.99 mg/g, followed by chlorogenic acid with 8.23 mg/g. The inhibition of ZP on α-glucosidase and xanthine oxidase activities was determined via the chemical method, and the inhibition on xanthine oxidase was better. Then, the effect of ZP on hyperuricemia zebrafish was investigated. It was found that ZP obviously reduced the levels of uric acid, xanthine oxidase, urea nitrogen and creatinine, and up-regulated the expression ofOAT1 and HPRT genes in hyperuricemia zebrafish. Finally, the targeted network pharmacological analysis and molecular docking of nine polyphenol compounds were performed to search for relevant mechanisms for alleviating hyperuricemia. These results will provide a valuable basis for the development and application of hazel leaf polyphenols as functional ingredients.
Assuntos
Corylus , Hiperuricemia , Animais , Polifenóis/farmacologia , Ácido Clorogênico/farmacologia , Simulação de Acoplamento Molecular , Peixe-Zebra , Farmacologia em Rede , Quempferóis , Hiperuricemia/tratamento farmacológico , Xantina Oxidase , Extratos Vegetais/farmacologiaRESUMO
Anxiety disorders are debilitating psychiatric diseases that affect â¼16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids (PUFAs), and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST; sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENT Soluble epoxide hydrolase (sEH), a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in central nucleus of the amygdala (CeA) neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-bed nucleus of the stria terminalis (BNST) pathway in regulation of anxiety-related behaviors.
Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/psicologia , Núcleo Central da Amígdala/metabolismo , Núcleos Cerebelares/metabolismo , Epóxido Hidrolases , Humanos , Masculino , Camundongos , Núcleos Septais/fisiologiaRESUMO
For the early diagnosis and effective evaluation of treatment effects of inflammation, a de novo bioanalytical method is urgently needed to monitor the metabolite nitric oxide (NO) associated with inflammatory diseases. However, developing a reliable detection method with excellent water solubility, biocompatibility, long retention time, and blood circulation is still challenging. In this work, we reported for the first time a de novo host-guest self-assembled nanosensor CTA for the quantitative detection and visualization of NO levels in inflammatory models. CTA mainly consists of two parts: (i) an adamantyl-labeled guest small-molecule RN-adH containing a classical response moiety o-phenylenediamine for a chemical-specific response toward NO and fluorophore rhodamine B with excellent optical properties as an internal reference for self-calibration and (ii) a remarkable water-soluble and biocompatible supramolecular ß-cyclodextrin polymer (Poly-ß-CD) host. In the presence of NO, the o-phenylenediamine unit was reacted with NO at a low pH value of â¼7.0, accompanied by changes in the intensity of the two emission peaks corrected for each other and the change in fluorescence color of the CTA solution from fuchsia to pink. Furthermore, CTA was an effective tool for NO detection with a fast response time (â¼60 s), high selectivity, and sensitivity (LOD: 22.3 nM). Impressively, the CTA nanosensor has successfully achieved the targeted imaging of NO in living inflammatory RAW 264.7 cells and mice models with satisfactory results, which can provide a powerful molecular tool for the visualization and assessment of the occurrence and development of NO-related inflammatory diseases in complex biosystems.
Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Camundongos , Corantes Fluorescentes/química , Fenilenodiaminas , Água/químicaRESUMO
Micro bunched electron beams with periodic longitudinal density modulation at optical wavelengths give rise to coherent light emission. In this paper, we show attosecond micro bunched beam generation and acceleration in laser-plasma wakefield via particle-in-cell simulations. Due to the near-threshold ionization with the drive laser, the electrons with phase-dependent distributions are non-linearly mapped to discrete final phase spaces. Electrons can preserve this initial bunching structure during the acceleration, leading to an attosecond electron bunch train after leaving the plasma with separations of the same time scale. The modulation of the comb-like current density profile is about 2k0 â¼ 3k0, where k0 is the wavenumber of the laser pulse. Such pre-bunched electrons with low relative energy spread may have potential in applications related to future coherent light sources driven by laser-plasma accelerators and broad application prospects in attosecond science and ultrafast dynamical detection.
RESUMO
Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.