Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 197: 111057, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757825

RESUMO

Considering the omnipresence of microplastics (MPs) in aquatic environments, they are expected to exert significatn impacts as carriers for diverse waterborne pollutants. In this work, the adsorptive behavior of two ionic components (i.e., sodium dodecyl benzene sulfonate (SDBS) and Cr(VI)) has been explored against the two types of MPs as model adsorbents, namely poly (ethylene terephthalate) (PET) and polystyrene (PS). The influence of key variables (e.g., pH, particle size, and dose of the MPs) on their adsorption behavior is evaluated from various respects. The maximum adsorption capacity values of SDBS on PET and PS are estimated to be 4.80 and 4.65 mg⋅g-1, respectively, while those of Cr(VI) ions are significantly lower at 0.080 and 0.072 mg⋅g-1, respectively, The adsorptive equilibrium of SDBS is best described in relation to pH and MP size by a Freundlich isotherm. In contrast, the adsorption behavior of Cr(VI) is best accounted for by a Langmuir isotherm to indicate its adsorption across at least two active surface sites.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Benzenossulfonatos , Cromo , Concentração de Íons de Hidrogênio , Cinética , Plásticos , Poluentes Químicos da Água/análise
2.
J Cell Biochem ; 119(4): 3440-3450, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29143976

RESUMO

In performing our experiment, impaired autophagy increased hepatocellular damage during the reperfusion period. It was demonstrated by the effect of blocking autophagy using bafilomycin A1 or knocking Atg5 gene out reduces the anti-apoptotic effect of Stat3. Here we focus on the role of signal transducer and activator of transcription 3 (Stat3) in regulating autophagy to alleviate hepatic IRI. We found that Stat3 was up-regulated during hepatic IRI and was associated with an activation of the autophagic signaling pathway. This increased Stat3 expression, which was allied with high autophagic activity, alleviated liver damage to IR, an effect which was abrogated by Stat3 epletion as demonstrated in both in vivo and in vitro methods. The levels of Atg5 protein were decreased when Stat3 was inhibited by HO 3867 or siStat3. We conclude that Stat3 appeared to exert a pivotal role in hepatic IRI, by activating autophagy to alleviate hepatic IRI, and Atg5 was required for this process. The identification of this novel pathway, that links expression levels of Stat3 with Atg5-mediated autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Fígado/metabolismo , Fígado/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Environ Sci Pollut Res Int ; 31(19): 28404-28417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546918

RESUMO

This study successfully achieved stable nitritation by adding hydrogen peroxide (H2O2) to the nitrification sludge whose nitritation stability had been destroyed. The batch experiment demonstrated that, the activity of ammonia-oxidizing bacteria (AOB) was restored more rapidly than that of nitrite oxidizing bacteria (NOB) after the addition of H2O2, thereby selectively promoting AOB enrichment and NOB washout. When the H2O2 concentration was 6.25 mg/L, the NOB activity was significantly reduced and the nitrite accumulation rate (NAR) was more than 95% after 18 cycles of nitrifying sludge restoration. As a result, H2O2 treatment enabled a nitrifying reactor to recover stable nitritation performance via H2O2 treatment, with the NAR and ammonia removal efficiency (ARE) both exceeding 90%. High-throughput sequencing analysis revealed that H2O2 treatment was successful in restoring nitritation, as the relative abundance of Nitrosomonas in the nitrifying reactor increased from 6.43% to 41.97%, and that of Nitrolancea decreased from 17.34% to 2.37%. Recovering nitritation by H2O2 inhibition is a low operational cost, high efficiency, and non-secondary pollution nitritation performance stabilization method. By leveraging the varying inhibition degrees of H2O2 on AOB and NOB, stable nitrification can be efficiently restored at a low cost and without causing secondary pollution.


Assuntos
Amônia , Peróxido de Hidrogênio , Nitrificação , Nitritos , Esgotos , Amônia/metabolismo , Nitritos/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Oxirredução , Eliminação de Resíduos Líquidos/métodos
4.
Bioresour Technol ; 381: 129118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141999

RESUMO

This study established a stable and efficient pilot-scale denitrification (DN) and partial nitritation (PN) combined with autotrophic nitrogen removal process for mature landfill leachate treatment. A total inorganic nitrogen removal efficiency (TINRE) of 95.3% was achieved without any external carbon source input, including 17.1%, 1.0% and 77.2% of nitrogen removal contributed by the DN, PN and autotrophic processes, respectively. ANAMMOX genus, Ca_Anammoxoglobus (19.4%) was dominant in autotrophic reactor. Moreover, denitrifying bacteria could utilize in-situ organics, including poorly degradable organics, to enhance the nitrogen removal performance of autotrophic process, contributing 3.4% of TINRE. This study provides new insights for the economical, low-carbon, and efficient treatment of mature landfill leachate.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Nitrogênio , Reatores Biológicos , Oxirredução , Esgotos
5.
Bioresour Technol ; 387: 129571, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37506935

RESUMO

The high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.9 mg/L and 140.0 mg/L to 1099.8 mg/L and 868.4 mg/L, respectively. During this process, the performance of PN and DN remained stable. The microbial analysis revealed that the Nitrosomonas exhibited strong tolerance to high levels of FA, and its relative abundance was positively correlated with amoABC (R2 0.984) and hao (R2 0.999) genes. The increase in microbial diversity could enhance the resistance ability of PN against the FA impact. In contrast, high levels of FA had scant influence on the microbial community and performance of DN.


Assuntos
Microbiota , Poluentes Químicos da Água , Amônia , Desnitrificação , Reatores Biológicos , Nitrogênio
6.
Environ Pollut ; 257: 113440, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31706754

RESUMO

More attention was paid to the attachment between microplastics and environmental pollutants. The adsorption performance of Polyethylene (PE) beads (a typical type of microplastics) and Cr(VI) ions with the existence of sodium dodecyl benzene sulfonate (SDBS) was investigated in this paper. The adsorption experiments of Cr(VI) ions by PE microplastics were conducted at different conditions, i.e. PE doses, pH and SDBS concentrations, respectively. The adsorption capability of Cr(VI) ions was increased from 0.39 to 1.36 mg⋅g-1 when the dosage of PE microplastics was increased from 2 to 14 g ⋅L-1 at pH of 5 with addition of SDBS, compared with increasing adsorption capability from 0.03 to 0.32 mg⋅g-1 without addition of SDBS. The pH would influence the adsorption capability with and without the addition of SDBS. When the pH was less than 6, the adsorption capability of Cr(VI) would be promoted by the addition of SDBS; however, there was a contrast tendency when the pH was more than 6, which was attributed to that SDBS would compete with CrO42- for occupying the adsorption sites of PE microplastic. The SDBS concentration would affect the adsorption performance of Cr(VI) ions onto PE microplastics. The peak of the adsorption capacity was at SDBS concentration between 1 and 1.5 mM. This research would provide a basis for investigating the influence of SDBS on adsorption performance of heavy metal by PE microplastics to simulate the surface attachment model of those three kinds of pollutants.


Assuntos
Cromo/química , Microplásticos/química , Poluentes Químicos da Água/química , Adsorção , Benzenossulfonatos , Concentração de Íons de Hidrogênio , Íons , Metais Pesados , Modelos Químicos , Plásticos , Polietileno , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA