RESUMO
Although tremendous advances have been made in preparing porous crystals from molecular precursors1,2, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).
Assuntos
Cristalização , DNA , Ouro , Nanopartículas , DNA/química , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Porosidade , Coloides/química , Cristalização/métodosRESUMO
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
RESUMO
In principle, designing and synthesizing almost any class of colloidal crystal is possible. Nonetheless, the deliberate and rational formation of colloidal quasicrystals has been difficult to achieve. Here we describe the assembly of colloidal quasicrystals by exploiting the geometry of nanoscale decahedra and the programmable bonding characteristics of DNA immobilized on their facets. This process is enthalpy-driven, works over a range of particle sizes and DNA lengths, and is made possible by the energetic preference of the system to maximize DNA duplex formation and favour facet alignment, generating local five- and six-coordinated motifs. This class of axial structures is defined by a square-triangle tiling with rhombus defects and successive on-average quasiperiodic layers exhibiting stacking disorder which provides the entropy necessary for thermodynamic stability. Taken together, these results establish an engineering milestone in the deliberate design of programmable matter.
Assuntos
DNA , DNA/genética , DNA/química , TermodinâmicaRESUMO
Despite stroke being one of the major and increasing burdens to global health, therapeutic interventions in intracerebral haemorrhage (ICH) continue to be a challenge. Existing treatment methods, such as surgery and conservative treatment have shown limited efficacy in improving the prognosis of ICH. However, more and more studies show that exploring the specific process of immune response after ICH and taking corresponding immunotherapy may have a definite significance to improve the prognosis of cerebral haemorrhage. Therefore, immune interventions are currently under consideration as therapeutic interventions in the ICH. In this review, we aim to clarify unique immunological features of stroke, and consider the evidence for immune interventions. In acute ICH, activation of glial cells and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the haemorrhage. Immune interventions that ameliorate brain inflammation, vascular permeability and tissue oedema should be administered promptly to reduce acute immune destruction and avoid subsequent immunosuppression. A deeper understanding of the immune mechanisms involved in ICH is likely to lead to successful immune interventions.
Assuntos
Hemorragia Cerebral , Imunoterapia , Humanos , Hemorragia Cerebral/terapia , Hemorragia Cerebral/imunologia , Imunoterapia/métodos , AnimaisRESUMO
OBJECTIVES: To investigate the safety and efficacy of indocyanine green (ICG) fluorescence-guided inguinal lymph node dissection (ILND) in patients with penile cancer. PATIENTS AND METHODS: A prospective, single-blind, randomised controlled clinical trial (ChiCTR2100044584) was performed among patients with penile caner who underwent bilateral modified ILND at four centres in China between 1 April 2021 and 30 June 2022. Patients aged 18-80 years and diagnosed with squamous cell carcinomas were included. Each enrolled patient was randomly assigned to either ICG fluorescence-guided ILND by a laparoscopic or robot-assisted approach in one groin, with non-ICG fluorescence-guided ILND in the other groin acting as a control. The primary outcome was the number of retrieved ILNs. Secondary outcomes included complications according to the Clavien-Dindo classification and the ILN non-compliance (inadequate removal of ILNs) rate. RESULTS: A total of 45 patients were included in the intention-to-treat (ITT) analysis, and the 42 who completed the entire study were included in the per protocol (PP) analysis. There were no ICG-related complications in any of the patients. The results of the ITT and PP analyses indicated that the total number of unilateral ILNs retrieved was higher on the ICG side than on the non-ICG side (mean 13 vs 9 ILNs, difference 4 ILNs [95% CI 2.7-4.4], P = 0.007), and the number of unilateral deep and superficial ILNs was higher on the ICG side. Furthermore, the LN non-compliance rate was lower on the ICG side than on the non-ICG side. Additionally, there was no significant difference in local complications in the groins between the two sides (P > 0.05). CONCLUSION: An ICG fluorescence-guided ILND was safe for patients with penile cancer. This procedure can improve the number of ILNs retrieved and reduce the LN non-compliance rate without increased complications. ICG fluorescence-guided ILND is beneficial and recommended for selected patients with penile cancer.
Assuntos
Verde de Indocianina , Neoplasias Penianas , Masculino , Humanos , Neoplasias Penianas/cirurgia , Neoplasias Penianas/patologia , Estudos Prospectivos , Método Simples-Cego , Excisão de Linfonodo/métodos , Linfonodos/patologia , Biópsia de Linfonodo SentinelaRESUMO
Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.
Assuntos
Biofilmes , Desnitrificação , Nitratos , Fósforo , Fósforo/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Transporte de Elétrons , Ferro , SulfetosRESUMO
The development of potential toxic metal ion probes is of great significance in the field of environmental detection. Herein, two squaramide ligands (2a, 2b) were constructed by combining the characteristics of squaric acid and imine groups. 2a and 2b can recognize Cu2+ and Cd2+, with LOD of 1.26 × 10-8 M and 2.04 × 10-8 M, respectively, and have the advantages of fast response and wide pH range. The binding ratio and binding mode of the probe and the target ion were determined by Job's plot, ESI-MS, and 1H NMR.
RESUMO
BACKGROUND: Ureteral stricture (US) is a pathological stenosis in the urinary tract characterized by increased collagen synthesis and inflammation. Autophagy activation has been shown to ameliorate tissue fibrosis and protect against fibrotic diseases. Verapamil has beneficial therapeutic benefits on fibrotic disorders. The pharmacological effects of verapamil on fibroblast autophagy in US and the underlying mechanism need to be investigated further. METHODS: US patients were recruited to isolate scar tissues, hematoxylin-eosin (HE) and Masson trichrome staining were performed to analyze histopathological changes. The US animal model was established and administered with verapamil (0.05 mg/kg) in the drinking water. Transforming growth factor (TGF)-ß1 was adopted to facilitate collagen synthesis in fibroblasts. The mRNA and protein expressions were examined by qRT-PCR, western blot, immunofluorescence and immunohistochemistry. ELISA was adopted to measure interleukin (IL)-1ß and IL-6 levels. Molecular interaction experiments like dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to analyze the interaction between signal transducers and activators of transcription 3 (STAT3) and RNA polymerase II associated factor 1 (PAF1). RESULTS: Herein, our results revealed that verapamil activated TGF-ß1-treated fibroblast autophagy and inhibited inflammation and fibrosis by repressing Ca2+/calmodulin-dependent protein kinase II (CaMK II) δ-mediated STAT3 activation. Our following tests revealed that STAT3 activated PAF1 transcription. PAF1 upregulation abrogated the regulatory effect of verapamil on fibroblast autophagy and fibrosis during US progression. Finally, verapamil mitigated US in vivo by activating fibroblast autophagy. CONCLUSION: Taken together, verapamil activated TGF-ß1-treated fibroblast autophagy and inhibited fibrosis by repressing the CaMK IIδ/STAT3/PAF1 axis.
Assuntos
Autofagia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fibroblastos , Fibrose , Fator de Transcrição STAT3 , Fator de Crescimento Transformador beta1 , Obstrução Ureteral , Verapamil , Verapamil/farmacologia , Verapamil/uso terapêutico , Autofagia/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Fator de Transcrição STAT3/metabolismo , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Cicatriz/patologia , Cicatriz/metabolismo , Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Cicatriz/prevenção & controle , Modelos Animais de Doenças , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Pessoa de Meia-IdadeRESUMO
We report a general nanopatterning strategy that takes advantage of the dynamic coordination bonds between polyphenols and metal ions (e.g., Fe3+ and Cu2+) to create structures on surfaces with a range of properties. With this methodology, under acidic conditions, 29 metal-phenolic complex-based precursors composed of different polyphenols and metal ions are patterned using scanning probe and large-area cantilever free nanolithography techniques, resulting in a library of deposited metal-phenolic nanopatterns. Significantly, post-treatment of the patterns under basic conditions (i.e., ammonia vapor) triggers a change in coordination state and results in the in situ generation of more stable networks firmly attached to the underlying substrates. The methodology provides control over feature size, shape, and composition, almost regardless of substrate (e.g., Si, Au, and silicon nitride). Under reducing conditions (i.e., H2) at elevated temperatures (180-600 °C), the patterned features have been used as nanoreactors to synthesize individual metal nanoparticles. At room temperature, the ammonia-treated features can reduce Ag+ to form metal nanostructures and be modified with peptides, proteins, and thiolated DNA via Michael addition and/or Schiff base reaction. The generality of this technique should make it useful for a wide variety of researchers interested in modifying surfaces for catalytic, chemical and biological sensing, and template-directed assembly purposes.
RESUMO
In this paper, we report a D-A-D-A-type fluorescence sensor, FX, composed of triphenylamine and pyrazine units as electron donors, pyridine units, and α-ß unsaturated carbon-based structures as electron acceptors. FX exhibits typical ICT characteristics. As a dual-emission material, FX undergoes acid-base-induced color changes and displays mechanofluorochromic properties in the solid state. In solution, FX, as an AIE material, shows significant fluorescence enhancement behavior in most halogenated solvents. Notably, it achieves a high quantum yield of 0.672 in a chloroform solution. We utilized this phenomenon to quantitatively detect chloroform through fluorescence titration analysis, with a detection limit of 0.061%. Additionally, we developed a test paper to verify the practical applicability of the sensor for detecting halogenated solvents. The fluorescence enhancement behavior was confirmed through DFT calculations. The results indicate that FX is not only a multifunctional dual-state emission material but also provides valuable references for the fluorescence detection of halogenated solvents.
RESUMO
In this study, an integrated treatment system was proposed and applied in situ, including detention tank, multistage constructed wetlands (CWs) and wastewater treatment plants (WWTPs), preventing nutrients flowing into Dianchi Lake, in which the treatment performance of multistage CWs were evaluated principally. Results skillfully realized the bypass purification of upstream river at dry reasons, as well as the effective management and treatment of the collected diffuse pollution at rainy reasons. The purified water flowing into water bodies could satisfy the Grade III of environmental quality standards for surface water in China with the average effluent concentrations of COD, NH4+-N, TN and TP decreased to 10 (51.2-72.7%), 0.5 (67.2-83.0%), 1.0 (71.2-79.6%) and 0.15 (72.3-89.4%) mg L-1, respectively. High-throughput sequencing results indicated that the application of poly-3-hydroxybutyrate-cohyroxyvelate-sawdust (PS) blends could enrich norank_f_Anaerolineaceae (7.95%) and Bradyrhizobium (10.2%), which were distinct from the dominant genera of Pleurocapsa (13.0%) in gravel-based CWs. Functional genes and metabolism analysis uncovered that the heterotrophic denitrification was the main pathway of nitrogen removal with the abundance of genes encoding TCA cycle, glycolysis and denitrification process up-regulated. In addition, molecular ecological network (MEN) analysis suggested the denitrification genes were positively correlated with the predominant microbes in PS-based CWs, favorable for denitrifiers to transfer and utilize electron donors during denitrification process. This study proved that the developed PS blends as carbon supplies in CWs and the proposed integrated treatment system are effective methods for watershed management, providing valuable reference to low-pollution wastewater treatment in practical engineering projects.
Assuntos
Carbono , Áreas Alagadas , Humanos , Desnitrificação , Nitrogênio/análise , Nutrientes , Interações Microbianas , Água/análise , Águas Residuárias/análise , Eliminação de Resíduos LíquidosRESUMO
Broadband absorbers are useful ultraviolet protection, energy harvesting, sensing, and thermal imaging. The thinner these structures are, the more device-relevant they become. However, it is difficult to synthesize ultrathin absorbers in a scalable and straightforward manner. A general and straightforward synthetic strategy for preparing ultrathin, broadband metasurface absorbers that do not rely on cumbersome lithographic steps is reported. These materials are prepared through the surface-assembly of plasmonic octahedral nanoframes (NFs) into large-area ordered monolayers via drop-casting with subsequent air-drying at room temperature. This strategy is used to produce three types of ultrathin broadband absorbers with thicknesses of ≈200 nm and different lattice symmetries (loose hexagonal, twisted hexagonal, dense hexagonal), all of which exhibit efficient light absorption (≈90%) across wavelengths ranging from 400-800 nm. Their broadband absorption is attributed to the hollow morphologies of the NFs, the incorporation of a high-loss material (i.e., Pt), and the strong field enhancement resulting from surface assembly. The broadband absorption is found to be polarization-independent and maintained for a wide range of incidence angles (±45°). The ability to design and fabricate broadband metasurface absorbers using this high-throughput surface-based assembly strategy is a significant step toward the large-scale, rapid manufacturing of nanophotonic structures and devices.
Assuntos
Luz , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodosRESUMO
Although bladder cancer is commonly chemosensitive to standard first-line therapy, the acquisition of the resistance to cisplatin (DDP)-based therapeutic regimens remains a huge challenge. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs, have been reported to play a critical role in cancer resistance to DDP. Here, we attempted to provide a novel mechanism by which the resistance of bladder cancer to DDP treatment could be modulated from the perspective of ncRNA regulation. We demonstrated that lncRNA MST1P2 (lnc-MST1P2) expression was dramatically upregulated, whereas miR-133b expression was downregulated in DDP-resistant bladder cancer cell lines, SW 780/DDP and RT4/DDP. Lnc-MST1P2 and miR-133b negatively regulated each other via targeting miR-133b. Both lnc-MST1P2 silence and miR-133b overexpression could resensitize DDP-resistant bladder cancer cells to DDP treatment. More important, miR-133b could directly target the Sirt1 3'-untranslated region to inhibit its expression. Inc-MST1P2/miR-133b axis affected the resistance of bladder cancer cells to DDP via Sirt1/p53 signaling. In conclusion, MST1P2 serves as a competing endogenous RNA for miR-133b to counteract miR-133b-induced suppression on Sirt1, therefore enhancing the resistance of bladder cancer cells to DDP. MST1P2/miR-133b axis affects the resistance of bladder cancer cells to DDP via downstream Sirt1/p53 signaling.
Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sirtuína 1/metabolismo , Neoplasias da Bexiga Urinária/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/genética , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismoRESUMO
Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to deal with the petroleum pollution after an oil spill accident. The biodegradation of crude oil by microorganisms co-incubated from sediments collected from the Penglai 19-3 oil platform, Bohai Sea, China, was examined. The relative susceptibility of the isomers of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene to biodegradation was also discussed. The results showed that the relative degradation values of total petroleum hydrocarbon (TPH) are 43.56% and 51.29% for sediments with untreated microcosms (S-BR1) and surfactant-treated microcosms (S-BR2), respectively. TPH biodegradation results showed an obvious decrease in saturates (biodegradation rate: 67.85-77.29%) and a slight decrease in aromatics (biodegradation rate: 47.13-57.21%), while no significant difference of resins and asphaltenes was detected. The biodegradation efficiency of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene for S-BR1 and S-BR2 samples reaches 1.28-84.43% and 42.56-86.67%, respectively. The efficiency of crude oil degradation in sediment with surfactant-treated microcosms cultures added Tween 20, was higher than that in sediment with untreated microcosms. The biodegradation and selective depletion is not only controlled by thermodynamics but also related to the stereochemical structure of individual isomer compounds. Information on the biodegradation of oil spill residues by the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem.
Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Petróleo/metabolismo , Acidentes , Bactérias/efeitos dos fármacos , Biodegradação Ambiental , China , Polissorbatos/farmacologia , Tensoativos/farmacologiaRESUMO
PURPOSE: The FIGO score cannot accurately stratify low-risk gestational trophoblastic neoplasia (GTN) patients who develop chemoresistance to single agent methotrexate chemotherapy. Tumour vascularisation is a key risk factor and its quantification may provide non-invasive way of complementing risk assessment. MATERIALS AND METHODS: 187 FIGO-staged, low-risk GTN patients were prospectively recruited. Power Doppler ultrasound was analysed using a quantification program. Four diagnostic indicators were obtained comprising the number of colour pixels (NCP), mean dB, power Doppler quantification (PDQ), and percentage of colour pixels (%CP). Each indicator performance was assessed to determine if they could distinguish the subset of low-risk patients who became chemoresistant. RESULTS: There were 111 non-resistant and 76 resistant patients. NCP performed best at distinguishing these two groups where the non-resistant group had an average 3435 (±â2060) pixels and the resistant group 6151 (±â3192) pixels (pâ<â0.001). PDQ and %CP showed significant differences (pâ<â0.001) but had poorer performance (area under ROC curves were 72â% and 67â% respectively compared with 75â% for NCP). The mean dB index was not significantly different (pâ=â0.133). CONCLUSION: Power Doppler ultrasound quantification shows potential for non-invasive assessment of tumour vascularity and can distinguish low-risk GTN patients who become chemoresistant from those who have an uncomplicated course with first line treatment.
Assuntos
Doença Trofoblástica Gestacional , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Metotrexato , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Ultrassonografia DopplerRESUMO
The precise structure and assembly process of pyrite-based biofilms remain poorly understood. The polysaccharides (PN), proteins (PS), and extracellular DNA were enriched in the soluble extracellular polymeric substance (EPS), loosely bound EPS, and tightly bound EPS, respectively, indicating a significant stratified structure of biofilms. The tryptophan facilitated mixotrophic metabolic processes. Both dominant (>1%) and rare species (<0.01 %) harbored core bacteria, including sulfur autotrophic bacteria, sulfate-reducing bacteria, and heterotrophic bacteria. Furthermore, partial least-squares path modeling quantified the contributions of total phosphorus (TP) (λ = 0.32), dissolved organic matter (DOC) (λ = 0.29), and NH4+-N (λ = 0.26) to variations in the microbial community. Nonmetric multidimensional scaling analysis revealed three distinct stages in biofilm development: colonization (0-36 d), succession (36-149 d), and maturation/old (149-215 d). Furthermore, neutral community model indicated that stochastic processes drove the colonization and maturation/old stages, while deterministic processes dominated the succession stage. This study offered valuable insights into the regulation of pyrite-based engineered ecosystems.
RESUMO
Background: Prostate cancer is the most common malignant tumor of male genitourinary system, and the gold standard for its diagnosis is prostate biopsy. Focusing on the methods and skills of prostate biopsy, we explored the learning curve and experience of a novel magnetic resonance imaging and transrectal ultrasound (mpMRI-TRUS) image fusion transperineal biopsy (TPB) technique using electromagnetic needle tracking under local anesthesia. Methods: The clinical and pathological data of 92 patients who underwent targeted TPB from January 2023 to July 2023 in our center were prospectively collected. The cumulative sum (CUSUM) analysis method and the best fitting curve were used to analyze the learning curve of this novel technique, and the clinical characteristics, perioperative data and tumor positive rate of prostate biopsy of patients at different stages of the learning curve were compared. Results: With the increase of the number of surgical cases, the overall operative time showed a downward trend. The best fitting curve of CUSUM reached its peak at the twelfth case, which is the minimum cumulative number of surgical cases needed to cross the learning curve of the operation. Taking this as the boundary, the learning curve is divided into two stages: learning improvement stage (group A, 12 cases) and proficiency stage (group B, 80 cases). The surgical time and visual analog scale score during prostate biopsy in group A were significantly higher than those in group B. The visual numerical scale score during prostate biopsy in group A was significantly lower than that in group B. There was no statistically significant difference between group A and group B in the detection rate of csPCa and the incidence of perioperative complications. Conclusion: The novel targeted TPB technique is divided into learning improvement stage and proficiency stage, and 12 cases may be the least cumulative number.
RESUMO
A 34-year-old man was admitted to the hospital presenting repeatedly urinary urgency for 3 years and yellow-green lithotripsy foreign body in urine for 1 month. Initially, he was diagnosed with a giant bladder calculi. After a cystoscopy exam and a lithotripsy for bladder calculi, Appendiceal vesical fistula was finally diagnosed and treated with a laparoscopic surgery. We report a rare case of appendiceal vesical fistulaï¼first presenting as giant bladder calculiï¼and successfully treated with minimal invasive surgery We report this case and reviewed literature to improve the understanding of this disease and reduce misdiagnosis and missed diagnosis.
RESUMO
Plasmonic nanomaterials, particularly noble metal nanoframes (NFs), are important for applications such as catalysis, biosensing, and energy harvesting due to their ability to enhance localized electric fields and atomic efficiency via localized surface plasmon resonance (LSPR). Yet the fundamental structure-function relationships and plasmonic dynamics of the NFS are difficult to study experimentally and thus far rely predominately on computational methodologies, limiting their utilization. This study leverages the capabilities of ultrafast electron microscopy (UEM), specifically photon-induced near-field electron microscopy (PINEM), to probe the light-matter interactions within plasmonic NF structures. The effects of shape, size, and plasmonic coupling of Pt@Au core-shell NFs on spatial and temporal characteristics of plasmon-enhanced localized electric fields are explored. Importantly, time-resolved PINEM analysis reveals that the plasmonic fields around hexagonal NF prisms exhibit a spatially dependent excitation and decay rate, indicating a nuanced interplay between the spatial geometry of the NF and the temporal evolution of the localized electric field. These results and observations uncover nanophotonic energy transfer dynamics in NFs and highlight their potential for applications in biosensing and photocatalysis.
RESUMO
Background: Prostate cancer (PCa) is one of the leading causes of cancer death in men. About 30% of PCa will develop a biochemical recurrence (BCR) following initial treatment, which significantly contributes to prostate cancer-related deaths. In clinical practice, accurate prediction of PCa recurrence is crucial for making informed treatment decisions. However, the development of reliable models and biomarkers for predicting PCa recurrence remains a challenge. In this study, the aim is to establish an effective and reliable tool for predicting the recurrence of PCa. Methods: We systematically screened and analyzed potential datasets to predict PCa recurrence. Through quality control analysis, low-quality datasets were removed. Using meta-analysis, differential expression analysis, and feature selection, we identified key genes associated with recurrence. We also evaluated 22 previously published signatures for PCa recurrence prediction. To assess prediction performance, we employed nine machine learning algorithms. We compared the predictive capabilities of models constructed using clinical variables, expression data, and their combinations. Subsequently, we implemented these machine learning models into a user-friendly web server freely accessible to all researchers. Results: Based on transcriptomic data derived from eight multicenter studies consisting of 733 PCa patients, we screened 23 highly influential genes for predicting prostate cancer recurrence. These genes were used to construct the Prostate Cancer Recurrence Prediction Signature (PCRPS). By comparing with 22 published signatures and four important clinicopathological features, the PCRPS exhibited a robust and significantly improved predictive capability. Among the tested algorithms, Random Forest demonstrated the highest AUC value of 0.72 in predicting PCa recurrence in the testing dataset. To facilitate access and usage of these machine learning models by all researchers and clinicians, we also developed an online web server (https://urology1926.shinyapps.io/PCRPS/) where the PCRPS model can be freely utilized. The tool can also be used to (1) predict the PCa recurrence by clinical information or expression data with high accuracy. (2) provide the possibility of PCa recurrence by nine machine learning algorithms. Furthermore, using the PCRPS scores, we predicted the sensitivity of 22 drugs from GDSC2 and 95 drugs from CTRP2 to the samples. These predictions provide valuable insights into potential drug sensitivities related to the PCRPS score groups. Conclusion: Overall, our study provides an attractive tool to further guide the clinical management and individualized treatment for PCa.