Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Sci Food Agric ; 102(10): 4035-4045, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34997590

RESUMO

BACKGROUND: Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS: In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION: The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.


Assuntos
Produtos da Carne , Óleos Voláteis , Zanthoxylum , Cápsulas , China , Óleos Voláteis/química , Zanthoxylum/química
2.
J Sci Food Agric ; 102(10): 4218-4228, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038172

RESUMO

BACKGROUND: Rabbit meat is a good edible meat source with high nutritional values. Cooking has a significant impact on the edible properties, nutritional qualities and flavor characteristics of meat. Studying the effect of cooking methods on rabbit meat qualities could encourage more understanding and acceptance of rabbit meat by consumers, and could also provide some reference for rabbit meat processing. Therefore, the effects of boiling, sous-vide cooking, steaming, microwaving, roasting, frying and pressure cooking on the edible, nutritive and volatile qualities of rabbit meat were investigated. RESULTS: The sous-vide cooked rabbit meat sample showed higher moisture content, water-holding capacity and lower cooking losses than other samples, but the results of roasted rabbit meat sample were the opposite, and scanning electron microscopy observations also verified the results. There was no significant difference in 2-thiobarbituric acid reactive substance (TBARS) value in the cooked samples except for roasting. Microwaving, roasting and frying exhibited stronger antioxidant activity than the other cooked samples after in vitro digestion. A total of 38 volatiles were identified in the cooked meat samples, and the samples were well divided into four groups by principal component analysis, and 13 volatiles were considered discriminatory variables for the cooked rabbit meat. CONCLUSION: The physicochemical characteristics of cooked meat differed significantly between the processing methods. Roasted meat showed lower TBARS value and stronger antioxidant activity after simulated digestion compared to the other meats. However, pressure cooked meat detected the most volatile components while roasting the least. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Carne , Animais , Antioxidantes/análise , Culinária/métodos , Carne/análise , Valor Nutritivo , Coelhos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
3.
J Sci Food Agric ; 101(11): 4605-4612, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474726

RESUMO

BACKGROUND: Hydroxyl-sanshools are mainly responsible for the numb taste and biological activities of Zanthoxylum bungeanum, but they show low water solubility, high volatility and easy degradation, which limit their application in the catering and food industries. Thus microcapsules of Z. bungeanum essential oil (ZBEO) were prepared to prevent numb-taste substance attenuation. RESULTS: The complex effects of hydroxypropyl-ß-cyclodextrin (HPCD) with other materials, such as konjac glucomannan octenyl succinate (KGOS), octenyl succinic anhydride-modified starch (OSAS), soy protein isolate (SPI) and gum arabic (GA), on the protection of the main numb-taste substance of ZBEO were investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that ZBEO was successfully encapsulated in the complex wall materials. X-ray diffraction indicated that the loaded essential oil did not affect the crystalline form of the wall material. The stability of the numb-taste substance α-sanshool in the microcapsules prepared with the complex microcapsule wall materials was higher than that in single-wall microcapsules. Storage stability evaluation indicated that microcapsules prepared with a combination of HPCD and SPI showed the greatest effect in maintaining the stability of the main numb-taste substance α-sanshool in ZBEO at room temperature, low pH and in high-salt conditions. CONCLUSION: Complex wall materials of polysaccharide and protein could effectively protect the numb-taste substance degradation of Z. bungeanum during processing and storage. © 2021 Society of Chemical Industry.


Assuntos
Composição de Medicamentos/métodos , Aromatizantes/química , Mananas/química , Óleos Voláteis/química , Extratos Vegetais/química , Proteínas de Soja/química , Zanthoxylum/química , Amorphophallus/química , Composição de Medicamentos/instrumentação , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Volatilização
4.
J Sci Food Agric ; 101(10): 4288-4297, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417246

RESUMO

BACKGROUND: The moromi fermentation of high-salt liquid-state fermentation (HLF) soy sauce is usually performed in high-brine solution (17-20%, w/w), which decreases the metabolic activity of aroma-producing yeast. To enhance the soy sauce flavors, increasing the salt tolerance of aroma-producing yeasts is very important for HLF soy sauce fermentation. RESULTS: In the present study, atmospheric and room-temperature plasma (ARTP) was first used to mutate the aroma-producing yeast Wickerhamomyces anomalus, and the salt tolerant strains were obtained by selection of synthetic medium with a sodium chloride concentration of 18% (w/w). Furthermore, adaptive laboratory evolution (ALE) was used to improve the salt tolerance of the mutant strains. The results obtained indicated that the combination use of ARTP and ALE markedly increased the NaCl tolerance of the yeast by increasing the cellular accumulation of K+ and removal of cytosolic Na+ , in addition to promoting the production of glycerin and strengthening the integrity of the cell membrane and cell wall. In soy sauce fermentation, the engineered strains improved the physicochemical parameters of HLF soy sauce compared to those produced by the wild-type strain, and the engineered strains also increased the alcohol, acid and aldehyde production, and enriched the types of esters in the soy sauce. CONCLUSION: The results of the present study indicated that the combination of ARTP mutagenesis and ALE significantly improved the salt tolerance of the aroma-producing yeast, and also enhanced the production of volatiles of HLF soy sauce. © 2021 Society of Chemical Industry.


Assuntos
Glycine max/microbiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Cloreto de Sódio/metabolismo , Fermentação , Aromatizantes/química , Aromatizantes/metabolismo , Microbiologia de Alimentos , Engenharia Genética , Mutagênese , Odorantes/análise , Cloreto de Sódio/análise , Alimentos de Soja/análise , Glycine max/química , Glycine max/metabolismo
5.
Compr Rev Food Sci Food Saf ; 19(4): 2256-2296, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337107

RESUMO

Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.


Assuntos
Contaminação de Alimentos/análise , Produtos da Carne/análise , Animais , DNA/análise , Metabolômica/métodos , Proteômica/métodos , Análise Espectral/métodos
6.
J Sci Food Agric ; 98(15): 5742-5749, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29766500

RESUMO

BACKGROUND: Konjac glucomannan octenyl succinate (KGOS) has excellent emulsification properties and can potentially be used in the food industry as an emulsifier, stabilizer and microcapsule wall material. In the present study, the in vitro digestion properties and emulsification capability and stability of KGOS were studied to evaluate the transport and encapsulation characteristics of KGOS with insoluble bioactive nutrients. RESULTS: Confocal scanning laser microscopy (CSLM) suggested that oil droplets could be encapsulated by KGOS into regular spheres. In vitro digestion properties showed that KGOS is effective for colon-targeted transport. ß-Carotene was selected as a representative lipophilic bioactive compound to evaluate the emulsification characteristics of KGOS. The loading capacity of the 0.4 mg mL-1 KGOS solution for ß-carotene was 3.26%, and transmission electron microscopy suggested that the self-aggregate particles of KGOS/ß-carotene (KGOSC) were more uniform than KGOS. With a composition of 0.03% ß-carotene, 0.3% KGOS and 10% medium-chain triglycerides, the emulsification yield of the KGOSC nanoemulsion was more than 95%. After 30 days of storage, the particle size and polydispersity index of the KGOSC nanoemulsion were less than 5 nm and 0.5, respectively, and the sensitivity of KGOSC nanoemulsions to storage conditions decreased in the order temperature, oxygen and light. CONCLUSION: The results of this study suggested that KGOS is a good potential emulsifier and stabilizer for lipophilic bioactive nutrient encapsulation. © 2018 Society of Chemical Industry.


Assuntos
Amorphophallus/química , Emulsificantes/química , Mananas/química , Extratos Vegetais/química , Succinatos/química , beta Caroteno/química , Composição de Medicamentos , Tamanho da Partícula
7.
Appl Microbiol Biotechnol ; 101(20): 7741-7753, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28900684

RESUMO

It is of utmost importance to construct industrial xylose-fermenting Saccharomyces cerevisiae strains for lignocellulosic bioethanol production. In this study, two xylose isomerase-based industrial S. cerevisiae strains, O7 and P5, were constructed by δ-integration of the xylose isomerase (XI) gene xylA from the fungus Orpinomyces sp. and from the bacterium Prevotella ruminicola, respectively. The xylose consumption of the strains O7 and P5 at 48-h fermentation was 17.71 and 26.10 g/L, respectively, in synthetic medium with xylose as the sole sugar source. Adaptive evolution further improved the xylose fermentation capacity of the two strains to 51.0 and 28.9% in average, respectively. The transcriptomes of these two strains before and after evolution were analyzed using RNA-Seq. The expression levels of the genes involved in cell integrity, non-optimal sugar utilization, and stress response to environment were significantly up-regulated after evolution and did not depend on the origin of xylA; the expression levels of the genes involved in transmembrane transport, rRNA processing, cytoplasmic translation, and other processes were down-regulated. The expression of genes involved in central carbon metabolism was fine-tuned after the evolution. The analysis of transcription factors (TFs) indicated that most of the genes with significant differential expression were regulated by the TFs related to cell division, DNA damage response, or non-optimal carbon source utilization. The results of this study could provide valuable references for the construction of efficient xylose-fermenting XI strains.


Assuntos
Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Neocallimastigales/enzimologia , Prevotella ruminicola/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Meios de Cultura/química , Fermentação , Perfilação da Expressão Gênica , Engenharia Metabólica , Neocallimastigales/genética , Prevotella ruminicola/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Seleção Genética , Análise de Sequência de RNA
8.
Appl Microbiol Biotechnol ; 100(3): 1531-1542, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603762

RESUMO

Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.


Assuntos
Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biotechnol Lett ; 36(10): 2011-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24966040

RESUMO

In the industrial production of bioethanol from lignocellulosic biomass, a strain of Saccharomyces cerevisiae that can ferment xylose in the presence of inhibitors is of utmost importance. The recombinant, industrial-flocculating S. cerevisiae strain NAPX37, which can ferment xylose, was used as the parent to delete the gene encoding p-nitrophenylphosphatase (PHO13) and overexpress the gene encoding transaldolase (TAL1) to evaluate the synergistic effects of these two genes on xylose fermentation in the presence of weak acid inhibitors, including formic, acetic, or levulinic acids. TAL1 over-expression or PHO13 deletion improved xylose fermentation as well as the tolerance of NAPX37 to all three weak acids. The simultaneous deletion of PHO13 and the over-expression of TAL1 had synergistic effects and improved ethanol production and reduction of xylitol accumulation in the absence and presence of weak acid inhibitors.


Assuntos
Microbiologia Industrial , Saccharomyces cerevisiae/genética , Xilose/metabolismo , 4-Nitrofenilfosfatase/genética , Ácido Acético/metabolismo , Fermentação , Formiatos/metabolismo , Deleção de Genes , Expressão Gênica , Ácidos Levulínicos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transaldolase/genética
10.
Front Oncol ; 13: 1165979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064112

RESUMO

Biliary cystadenoma (also called mucinous cystic neoplasm with low-grade intraepithelial neoplasia) is a rare cystic tumor that arises from the biliary epithelium. The cause of biliary cystadenoma is still unclear. Jaundice is a rare presentation of intrahepatic biliary cystadenoma, which can lead to a diagnostic dilemma. Herein, we present a case of intrahepatic biliary cystadenoma that primarily exhibited as jaundice. A 56-year-old woman has suffered from yellow staining of her skin and sclera for more than 1 month. She had a poor appetite and mild epigastric pain. Laboratory examination showed elevated levels of total bilirubin and elevated carbohydrate antigen 19-9 (CA19-9). A contrast-enhanced computed tomography of the abdomen showed a 7.4 * 5.3-cm, oval, low-density lesion in the left liver parenchyma with a clear boundary and visible septa. The common bile duct was obviously dilated with wall thickening. On magnetic resonance imaging, the lesion in the liver showed a multilocular cystic, unenhanced long T2 signal. There was local thickening of the common bile duct wall with short T2-like filling defects and high signal intensity on diffusion-weighted imaging (DWI). The patient had no history of other malignant tumors and adjuvant therapy such as radiotherapy and chemotherapy. She was clinically suspected of having either biliary cystadenoma or a malignancy; hence, resection was performed. Macroscopically, the excised tissue specimen showed a polypoid mass in the common bile duct, which extended along the bile duct to the intrahepatic bile duct. There was a cystic and solid mass in the left liver with yellow turbid fluid, which was associated with the polypoid mass in the common bile duct. Histopathology suggests mucinous cystadenoma of the liver and hilar bile duct. The differential diagnosis of biliary cystadenoma and treatment selection have been discussed.

11.
Food Chem X ; 18: 100675, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122553

RESUMO

Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 âˆ¼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.

12.
Int J Biol Macromol ; 253(Pt 5): 127186, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802441

RESUMO

Excellent 3D printing materials must exhibit good extrudability and supportability, but these two characteristics are often contradictory. In this study, peach gum polysaccharide (PGP) was added to gelatin to prepare a 3D-printed functional gummy candy encapsulating curcumin. Rheology tests indicated that adding PGP could effectively improve the apparent viscosity and thermal stability and consequently improve the 3D printability and supportability of the products. When PGP addition was 6 %, the printing accuracy was higher than 90 %. Texture and microstructure analysis further revealed that PGP addition promoting a dense gel structure formed and the water holding capacity and supportability of gel materials were enhanced. Furthermore, the in vitro gastrointestinal digestion tests showed that after 6 h of simulated gastrointestinal fluid digestion, the retention rate of curcumin was nearly 80 %. The above results indicated that the composite gel of PGP and gelatin is a good 3D printing base material for nutrient delivery.


Assuntos
Curcumina , Prunus persica , Gelatina/química , Polissacarídeos , Doces , Reologia , Impressão Tridimensional
13.
Food Res Int ; 173(Pt 1): 113250, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803562

RESUMO

Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat ß-glucan (OG) and hydrolyzed oat ß-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.


Assuntos
Hidroxibenzoatos , beta-Glucanas , Hidroxibenzoatos/química , Antioxidantes/farmacologia , Antioxidantes/química
14.
Food Chem X ; 17: 100546, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845469

RESUMO

Chlorogenic acid (CA) has a wide range of biological activities but the chemical structure is extremely unstable. In this study, CA was grafted onto a soluble oat ß-glucan (OßGH) to improve the stability. Although the crystallinity and thermal stability of CA-OßGH conjugates reduced, the storage stability of CA significantly improved. The DPPH and ABTS scavenging ability of CA-OßGH IV (graft ratio 285.3 mg CA/g) were higher than 90 %, which is closed to activities of equivalent concentration of Vc (93.42 %) and CA (90.81 %). The antibacterial abilities of CA-OßGH conjugates are improved compared to the equivalent content of CA and potassium sorbate. Particularly, the inhibition rate of CA-OßGH for gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) are significantly higher than that of gram-negative bacteria (Escherichia coli). The results demonstrated that covalent grafted CA with soluble polysaccharide is an effective strategy to enhance its stability and biological activities.

15.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201063

RESUMO

It is very important to evaluate the immunotoxicity and molecular mechanisms of pesticides. In this study, difenoconazole and chlorothalonil were evaluated for immunotoxicity by using the human Jurkat T-cell line, and the EC50 were 24.66 and 1.17 mg/L, respectively. The joint exposure of difenoconazole and chlorothalonil showed a synergistic effect at low concentrations (lower than 10.58 mg/L) but an antagonistic effect at high concentrations (higher than 10.58 mg/L). With joint exposure at a concentration of EC10, the proportion of late apoptotic cells was 2.26- and 2.91-fold higher than that with exposure to difenoconazole or chlorothalonil alone, respectively. A transcriptomics analysis indicated that the DEGs for single exposure are associated with immunodeficiency disease. Single exposure to chlorothalonil was mainly involved in cation transportation, extracellular matrix organization, and leukocyte cell adhesion. Single exposure to difenoconazole was mainly involved in nervous system development, muscle contraction, and immune system processes. However, when the joint exposure dose was EC10, the DEGs were mainly involved in the formation of cell structures, but the DEGs were mainly involved in cellular processes and metabolism when the joint exposure dose was EC25. The results indicated that the immunotoxicological mechanisms underlying joint exposure to difenoconazole and chlorothalonil are different under low and high doses.

16.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627080

RESUMO

Essential oils (EOs) have excellent antibacterial activity and are generally recognized as safe (GRAS) for use in food preservatives. However, the application of EOs is limited because of their strong volatility and easily oxidized. Encapsulation of EOs into nanoemulsions could effectively prevent oxidative deterioration. In this study, lemon essential oil-based nanoemulsion (LEO/NE) was prepared by high-pressure homogenization. FT-IR and encapsulation efficiency analysis indicated that LEO was effectively encapsulated in the nanoemulsion. The results of zeta potential changes after 35 d storage indicated that LEO/NE exhibits good stability at room temperature. The effect of LEO/NE on the main soft rot pathogens of kiwifruit Phomopsis sp. was investigated, and the results showed that LEO/NE significantly inhibited spore germination and mycelia growth of Phomopsis sp. by promoting ROS accumulation, intracellular antioxidant enzyme activities, and cell apoptosis. The preservation experiment was carried out by inoculating Phomopsis sp. spores into fresh kiwifruit, and the LEO/NE effectively inhibited soft rot development in kiwifruit in a LEO dose dependent manner. LEO/NE with 1% LEO loading amount has a good effect on preventing postharvest decay of kiwifruit caused by Phomopsis sp.

17.
Food Res Int ; 157: 111416, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761662

RESUMO

Lactic acid bacteria fermentation is a commonly applied technique to produce nutritional, functional, and organoleptic enhanced foods. In the present study, protein hydrolysis and Lactobacillus plantarum fermentation were coupled to develop quinoa beverages. Protein hydrolysis effectively promoted the growth and fermentation of L. plantarum. Fermentation alone did not significantly improve antioxidant activity, but the combined use of protein hydrolysis and L. plantarum fermentation significantly improved the antioxidant activity of the quinoa beverage. Nontargeted metabolomics based on UHPLC-Q Exactive HF-X/MS and multivariate statistical analysis were performed to reveal the metabolite profile alterations of the quinoa beverage by different processing methods. A total of 756 metabolites were identified and annotated, which could be categorized into 12 different classes. The significant differentially abundant metabolites were mainly involved in primary metabolite metabolism and secondary metabolite biosynthesis. Many of these metabolites were proven to be vitally important to the function and taste formation of the quinoa beverage. Most importantly, the coupled use of protein hydrolysis and L. plantarum fermentation significantly increased some functional ingredients compared with protein hydrolysis and L. plantarum fermentation alone. The above results indicate that protein hydrolysis coupled with L. plantarum fermentation is an effective strategy to develop functional quinoa beverages.


Assuntos
Chenopodium quinoa , Lactobacillus plantarum , Antioxidantes/análise , Bebidas , Chenopodium quinoa/metabolismo , Fermentação , Hidrólise , Lactobacillus plantarum/metabolismo , Metabolômica
18.
Foods ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36496656

RESUMO

Dimethomorph (DMM) is a broad-spectrum fungicide used globally in agricultural production, but little is known regarding the immunotoxicity of DMM in humans. In this study, the immunotoxicity of DMM on human Jurkat T cells was evaluated in vitro. The results indicated that the half-effective concentration (EC50) of DMM for Jurkat cells was 126.01 mg/L (0.32 mM). To further elucidate the underlying mechanism, transcriptomics based on RNA sequencing for exposure doses of EC25 (M21) and EC10 (L4) was performed. The results indicated that compared to untreated samples (Ctr), 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated, 13 downregulated) were significantly differentially regulated in the L4 and M21 samples, respectively. A gene ontology analysis indicated that the significantly differentially expressed genes (DEGs) were mostly enriched in the negative regulation of cell activities, and a KEGG pathway analysis indicated that the DEGs were mainly enriched in the immune regulation and signal transduction pathways. A quantitative real-time PCR for the selected genes showed that compared to the high-dose exposure (M21), the effect of the low-dose DMM exposure (L4) on gene expression was more significant. The results indicated that DMM has potential immunotoxicity for humans, and this toxicity cannot be ignored even at low concentrations.

19.
Carbohydr Polym ; 279: 119002, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980350

RESUMO

Ferulic acid (FA) is an effective chemopreventive and therapeutic agent for colorectal cancer. However, FA cannot stably reach the colon through human digestive system, and it can be grafted into oligosaccharides to improve its digestion stability. Therefore, in this study, different degrees of substitution of feruloylated oat ß-glucan (FA-OßG) were prepared by grafting FA onto water soluble oat ß-glucan. FA grafting changed the crystallinity and surface morphology of OßG, and the thermal stability of the FA-OßG improved. As the DS increased, the antioxidant activity of FA-OßG increased, and FA-OßG III with DS of 0.184 showed the same antioxidant activities compared to the equal amount of free FA. The FA-OßG showed higher stability under gastrointestinal and colonic conditions than free FA. Furthermore, the FA-OßG conjugates exhibited good in vitro anticancer activity against human colorectal cancer cells, while FA-OßG III showed better anticancer activity than an equal amount of free FA.


Assuntos
Antineoplásicos Fitogênicos , Antioxidantes , Ácidos Cumáricos , beta-Glucanas , Adulto , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Fezes , Feminino , Fermentação , Suco Gástrico/química , Células HCT116 , Humanos , Secreções Intestinais/química , Masculino , Picratos/química , Ácidos Sulfônicos/química , Propriedades de Superfície , Adulto Jovem , beta-Glucanas/química , beta-Glucanas/farmacologia
20.
Front Immunol ; 13: 1049812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389727

RESUMO

Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Humanos , Bile , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/patologia , Biomarcadores , Ductos Biliares Intra-Hepáticos/patologia , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA