Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Environ Res ; 215(Pt 1): 114259, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100098

RESUMO

The accumulation of cadmium (Cd) in grains and edible parts of crops poses a risk to human health. Because rice is the staple food of more than half of the world population, reducing Cd uptake by rice is critical for food safety. HydroPotash (HYP), an innovative potassium fertilizer produced with a hydrothermal process, has the characteristics of immobilizing heavy metals and potential use for remediating Cd-contaminated soils. The objective of this study was to evaluate the HYP as a soil amendment to immobilize Cd in acidic soils and to reduce the accumulation of Cd in rice tissues. The experiment was performed in a greenhouse with a Cecil sandy loam soil (pH 5.3 and spiked with 3 mg Cd kg-1) under either flooding conditions (water level at 4 cm above the soil surface) or at field capacity. Two hydrothermal materials (HYP-1 and HYP-2) were compared with K-feldspar + Ca(OH)2 (the raw material used for producing HYP), Ca(OH)2, zeolite, and a control (without amendment). After 30 days of soil incubation, HydroPotashs, the raw material, and Ca(OH)2 increased both soil solution pH and electrical conductivity. These materials also decreased soluble Cd concentration (up to 99.7%) compared with the control (p < 0.05). After 145 days, regardless of the materials applied, plant growth was favored (up to 35.8%) under the flooded regime. HydroPotash-1 was more effective for increasing dry biomass compared with other amendments under both water regimes. HydroPotashs reduced extractable Cd in soil, Cd content in plant biomass at tillering and maturing stage, and were efficient in minimizing Cd accumulation in rice grains.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Zeolitas , Silicatos de Alumínio , Cádmio/análise , Fertilizantes , Humanos , Oryza/química , Potássio/farmacologia , Compostos de Potássio , Solo/química , Poluentes do Solo/análise , Água , Zeolitas/farmacologia
2.
J Environ Manage ; 291: 112711, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964625

RESUMO

Hydrothermally-altered feldspar (HydroPotash, HYP) possesses, among other physicochemical properties, high pH buffering and cation exchange capacity. Therefore, it may potentially remove heavy metals from aqueous solutions and immobilize these metals in contaminated soil. This study aimed to evaluate the capabilities of two types of HydroPotash (HYP-1 and HYP-2) and a zeolite sample (a commercial adsorbent) for immobilizing cadmium (Cd), zinc (Zn), and lead (Pb) from both aqueous solution and contaminated soils from a Zn-smelting area (classified as soilhigh, soilintermediate, and soillow based on their level of soluble metal concentration). Sorption studies in natural suspension pH showed that HYPs removed 63.8-99.9% Zn, 20.6-40.7% Cd, and 68.4-99.7% Pb from aqueous solution. In the batch test with controlled pH (at pH 5.5), HYPs sorbed more Cd than zeolite. Analyses of scanning electron microscopy-energy dispersive X-ray spectroscopy after desorption showed the presence of Pb at HYP-2, indicating that this metal was effectively adsorbed. In soilhigh HYPs immobilized 99.9% of Zn, Cd, and Pb after one week of soil incubation with these products. The HYPs immobilization effect persisted up to 84 days of soil incubation with these products. The increased soil pH promoted by HYPs appears to be the main factor controlling metal sorption. In conclusion, HydroPotash can be used as an adsorbent/amendment to effectively immobilize heavy metals in both water and contaminated soils by precipitation and adsorption. Our findings indicate the high potential of this material for Cd, Zn, and Pb stabilization, which is of great relevance when recovering areas affected by mining/smelting activities with multi-element contamination.


Assuntos
Metais Pesados , Poluentes do Solo , Silicatos de Alumínio , Cádmio/análise , Metais Pesados/análise , Compostos de Potássio , Solo , Poluentes do Solo/análise , Tecnologia
3.
Ecotoxicol Environ Saf ; 195: 110475, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208212

RESUMO

Risk assessment regarding heavy metals in tea is crucial to ensure the health of tea customers. However, the effects of geological difference on distribution of heavy metals in soils and their accumulation in tea leaves remain unclear. This study aimed to estimate the impacts of geological difference on distribution of cadmium (Cd), lead (Pb), thallium (Tl), mercury (Hg), arsenic (As), antimony (Sb), chromium (Cr), nickel (Ni), and manganese (Mn) in soils and their accumulation in tea leaves, and further evaluate their health risks. 22 soils and corresponding young tea leaves (YTL) and old tea leaves (OTL), from geologically different plantations, were sampled and analyzed. Results showed that heavy metals concentrations in soils, derived from Permian limestone and Cambrian weakly mineralized dolomite, were obviously greater than those from Silurian clastic rock. The geological difference controlled the distribution of soil heavy metals to a large extent. Contents of Cd, Tl, and Mn in tea leaves mainly depended on their contents in soils. Soil Hg, Pb, As, and Sb contents may not be the only influencing factors for their respective accumulation in tea leaves. More attentions should be paid to soil acidification of tea plantations to ensure the tea quality security. Target hazard quotients (THQ) of Cd, Pb, Tl, Hg, As, Sb, Cr, and Ni and hazard index (HI) via tea intake were below one, indicating no human health risk. The non-mineralized Silurian area was less at risk of heavy metals accumulation in tea leaves than the Cambrian metallogenic belt and the Permian Cd-enriched zone. This study could provide an important basis to understand and mitigate the potential risks of heavy metals in tea.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Chá/química , Antimônio/análise , Arsênio/análise , Cádmio/análise , China , Cromo/análise , Monitoramento Ambiental , Fenômenos Geológicos , Humanos , Chumbo/análise , Manganês/análise , Mercúrio/análise , Níquel/análise , Folhas de Planta/química , Medição de Risco , Solo/química , Tálio/análise
4.
Ecotoxicol Environ Saf ; 206: 111383, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002822

RESUMO

Using accumulators for intercropping in agricultural production can change the heavy metal concentration in the target plants. This study aims to investigate how intercropping wheat (Triticum aestivum L.) and Solanum nigrum L. affects soil bacterial community and cadmium (Cd) absorption in response to Cd-contaminated soil. We compared the concentrations and accumulations of Cd by plants, the activities of soil enzymes and the bacterial community structures of rhizosphere soil in monoculture and intercropping system. Principal component analysis (PCA) ordinations showed that soil bacterial communities were significantly separated by MW and IW, which illustrated intercropping with Solanum nigrum L. impacted the bacterial community structure of wheat. Firstly, the results showed that the biomass of shoots and roots in intercropped wheat (IW) were significantly decreased by 16.19% and 29.38% compared with monoculture wheat (MW) after 60 days after transplanting (DAT). Secondly, the Cd concentration and accumulation of shoots in IW was higher than MW. The Cd accumulation of IW shoots and roots were increased 12.87% and 0.98%, respectively after 60 days DAT. Besides, the enzymes activity [catalase (CAT), urease (UA) and alkaline phosphatase (ALP)] of IW were decreased 35%, 6% and 21%, respectively after 60 days DAT. Finally, the diversity indexes [Abundance-based Coverage Estimator (ACE), Chao and InvSimpson] of IW were lower than MW. These results indicated that intercropping with Solanum nigrum L. inhibited the wheat growth and decreased the bacterial community diversity in wheat rhizosphere, increased the Cd concentration and accumulation in plant tissues of wheat. Therefore, intercropping Solanum nigrum L. and wheat with Cd-contaminated soil might increase the risk of excessive Cd in wheat.


Assuntos
Cádmio/análise , Produção Agrícola/métodos , Poluentes do Solo/análise , Solanum nigrum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Bioacumulação , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Triticum/metabolismo
5.
J Sci Food Agric ; 100(7): 3046-3055, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065399

RESUMO

BACKGROUND: The geographical origin of tea (Camellia sinensis) can be traced using mineral elements in its leaves as fingerprints. However, the role that could be played by soil mineral elements in the geographical authentication of tea leaves has been unclear. In this study, 22 mineral elements in 73 pairs of tea leaves and soils from three regions (Pu'an, Duyun, and Liping) in Guizhou, China, were determined using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The mineral element concentrations were processed by multivariate statistical analysis, including one-way analysis of variance (ANOVA), correlation analysis, principal component analysis (PCA), and stepwise linear discriminant analysis (S-LDA). RESULTS: Based on a one-way ANOVA, tea leaves and soils with different origins possessed unique mineral element fingerprints. Sixteen mineral element concentrations in tea leaves were significantly correlated with those in soils (P < 0.05). The geographical origins of tea leaves were effectively differentiated using the 16 correlated mineral elements combined with PCA. The S-LDA model offered a 100% differentiation rate, and six indicative elements (phosphorus, Sr, U, Pb, Cd, and Cr) were selected as important fingerprinting markers for the geographic traceability of tea leaves. The accurate discrimination rate of geographical origin was unaffected by the cultivars of tea in the S-LDA model. CONCLUSIONS: Mineral elements in soils played an important role in the geographical authentication of tea leaves. Mineral elemental concentrations with significant correlations between tea leaves and soils could be robust, and could be used to trace the geographical origins of tea leaves. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Oligoelementos/análise , Camellia sinensis/classificação , China , Análise Discriminante , Geografia , Espectrometria de Massas , Minerais/análise , Folhas de Planta/química , Folhas de Planta/classificação , Análise de Componente Principal , Espectrofotometria Atômica , Chá/química
6.
Environ Sci Technol ; 53(24): 14752-14760, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747513

RESUMO

The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.


Assuntos
Benzopiranos , Lignina , Carboidratos , Culinária
7.
J Environ Manage ; 220: 191-197, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778955

RESUMO

The use of controlled-release urea (CRU) has become one of best management practices for increasing crop yield and improving nitrogen (N) use efficiency (NUE). However, the effects of CRU on direct-seeded rice are not well understood while direct-seeding has gradually replaced transplanting due to increasing labor cost and lack of irrigation water. The objective of this two-year field experiment was to compare the effects of the CRU at four rates (120, 180, 240 and 360 kg N ha-1, CRU1, CRU2, CRU3 and CRU4, respectively) with a conventional urea fertilizer (360 kg N ha-1; U) and a control (no N fertilizer applied; CK) on yield, biomass, NUE of direct-seeded rice and soil nutrients. The results indicated that the successive release rates of N from CRU corresponded well to the N requirements of rice. The use of CRU3 and CRU4 increased rice grain yields by 20.8 and 28.7%, respectively, compared with U. In addition, the NUEs were improved by all CRU treatments compared to the U treatment. Concentrations of NO3--N and NH4+-N in the soil were increased, especially during the later growth stages of the rice, and the leaching of N was reduced with CRU treatments. In conclusion, applying CRU on direct-seeded rice increased the crops yields and NUE, increased nitrogen availability at the late growth stages, and reduced N leaching.


Assuntos
Fertilizantes , Nitrogênio , Oryza/crescimento & desenvolvimento , Ureia , Agricultura , Preparações de Ação Retardada , Solo
8.
Molecules ; 23(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453661

RESUMO

This study aimed to construct objective and accurate geographical discriminant models for tea leaves based on multielement concentrations in combination with chemometrics tools. Forty mineral elements in 87 tea samples from three growing regions in Guizhou Province (China), namely Meitan and Fenggang (MTFG), Anshun (AS) and Leishan (LS) were analyzed. Chemometrics evaluations were conducted using a one-way analysis of variance (ANOVA), principal component analysis (PCA), linear discriminant analysis (LDA), and orthogonal partial least squares discriminant analysis (OPLS-DA). The results showed that the concentrations of the 28 elements were significantly different among the three regions (p < 0.05). The correct classification rates for the 87 tea samples were 98.9% for LDA and 100% for OPLS-DA. The variable importance in the projection (VIP) values ranged between 1.01⁻1.73 for 11 elements (Sb, Pb, K, As, S, Bi, U, P, Ca, Na, and Cr), which can be used as important indicators for geographical origin identification of tea samples. In conclusion, multielement analysis coupled with chemometrics can be useful for geographical origin identification of tea leaves.


Assuntos
Modelos Químicos , Modelos Estatísticos , Chá/química , China , Análise Discriminante , Geografia , Análise dos Mínimos Quadrados , Limite de Detecção , Análise de Componente Principal
9.
Sci Total Environ ; 927: 172210, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583616

RESUMO

Developing management strategies to safeguard public health and environmental sustainability requires a comprehensive understanding of the solubility and mobility of trace and alkaline metals in the event of seawater flooding. This study investigated the effects of seawater flooding, along the duration of flooding, on the release of trace and alkaline metals (Mn, Fe, Cu, Zn, Ca, K, and Mg) in two calcareous soils (Krome and Biscayne) located in southern Florida. Seawater flooding experiments involved two soil types and four flooding durations (1, 7, 14, and 28 days) replicated three times. Freshwater flooding experiments were also conducted for comparison. After each flooding experiment, soil samples were collected at three depths (15, 30, and 45 cm), and analyzed for selected elements. Comparative analysis revealed significant releases of Mn, Fe, and Zn in both soils flooded by seawater compared to freshwater. In most cases, significant increments were evident as early as 1-day exposure to seawater flooding, which further increased with flooding duration. However, the impacts of seawater flooding had notable differences between the two soils. Seawater flooding in Krome soil for 28 days, resulted in higher Mn, Fe, and Zn contents by 58, 340, and 510% compared with freshwater flooding, while corresponding increases in Biscayne soil were 3.3, 130, and 180%, respectively. Comparable marginal increases in Cu content were observed for both soils. Similarly, seawater flooding increased K, Mg, and Na contents from single-day flooding. The interplay between soil type, column depth, flooding duration, and their interactions proved influential factors in determining Mn, Fe, Cu, and Zn releases, with peak levels typically observed on the 28th day of flooding and at bottom depths. Overall, these findings highlight the release of these elements, raising concerns about potential plant toxicity and groundwater or surface water contamination due to leaching and runoff.

10.
ACS Omega ; 8(26): 23772-23781, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426219

RESUMO

Controlled- or slow-release urea can improve crop nitrogen use efficiencies and yields in many agricultural production systems. The effect of controlled-release urea on the relationships between levels of gene expression and yields has not been adequately researched. We conducted a 2 year field study with direct-seeded rice, which included treatments of controlled-release urea at four rates (120, 180, 240, and 360 kg N ha-1), a standard urea treatment (360 kg N ha-1), and a control treatment without applied nitrogen. Controlled-release urea improved the inorganic nitrogen concentrations of root-zone soil and water, functional enzyme activities, protein contents, grain yields, and nitrogen use efficiencies. Controlled-release urea also improved the gene expressions of nitrate reductase [NAD(P)H] (EC 1.7.1.2), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 1.4.1.14). With the exception of glutamate synthase activity, there were significant correlations among these indices. The results showed that controlled-release urea improved the content of inorganic nitrogen within the rice root zone. Compared with urea, the average enzyme activity of controlled-release urea increased by 50-200%, and the relative gene expression was increased by 3-4 times on average. The added soil nitrogen increased the level of gene expression, allowing enhanced synthesis of enzymes and proteins for nitrogen absorption and use. Hence, controlled-release urea improved the nitrogen use efficiency and the grain yield of rice. Controlled-release urea is an ideal nitrogen fertilizer showing great potential for improving rice production.

11.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653895

RESUMO

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist.In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47-88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

12.
Int J Biol Macromol ; 224: 256-265, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257363

RESUMO

Bio-based controlled release fertilizers (BCRFs) are cost-effective and renewable thus gradually replacing petroleum-based controlled release fertilizers (CRFs). However, most of the study mainly focused on modifying BCRFs to improve controlled-release performance. It is necessary to further increase the functionality of BCRF for expanding the application. A multifunctional double layered bio-based CRF (DCRF) was prepared. Urea was used as the core of fertilizer, bio-based polyurethane was used as the inner coating, and sodium alginate and copper ions formed the hydrogel as the outer coating. In addition, mesoporous silica nanoparticles loaded with sodium selenate was used to modify the sodium alginate hydrogel (MSN@Se hydrogel). The results showed that the nitrogen longevity of the DCRF was much better than that of urea and BCRF. The selenium nutrient longevity of the DCRF was 40 h, much longer than that of sodium selenate. The DCRF improved the yield and nutritive value of cherry radish (Raphanus sativus L. var.radculus pers) with the elevated contents of selenium, an essential trace element. Moreover, the DCRF showed inhibitory effect on Fusarium oxysporum Schltdl. and could resist soil-borne fungal diseases continuously. Overall, this multifunctional fertilizer has great potential for expanding the use of BCRFs for sustainable development of agriculture.


Assuntos
Raphanus , Selênio , Poliuretanos , Fertilizantes/análise , Preparações de Ação Retardada , Antifúngicos , Ácido Selênico , Solo , Nitrogênio/análise , Ureia
13.
Sci Total Environ ; 892: 164521, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268141

RESUMO

Herein, hydrogen (H·) radical was observed as a new pathway to produce hydroxyl (OH·) radicals that promoted cadmium sulfide (CdS) dissolution and thus Cd solubility in paddy soils. In soil incubation experiments, the bioavailable Cd concentrations in flooded paddy soils were increased by 8.44 % as the soil was aerated for 3d. For the first time, the H· radical was observed in aerated soil sludge. The association of CdS dissolution with free radicals was thereafter confirmed in an electrolysis experiment. Both H· and OH· radicals in electrolyzed water were confirmed by the electron paramagnetic resonance analysis. In the system with CdS, water electrolysis increased soluble Cd2+ concentration by 60.92 times, which was compromised by 43.2 % when the radical scavenger was introduced. This confirmed the free radicals can lead to oxidative dissolution of CdS. The H· radical was generated in systems with fulvic acid or catechol irradiated by ultraviolet lights, indicating soil organic carbon could be an important precursor for H· and OH· radicals. Biochar application decreased soil DTPA-Cd by 22-56 % invoking mechanisms besides adsorption. First, biochar quenched radicals and reduced CdS dissolution by 23.6 % in electrolyzed water in which -C-OH of biochar was oxidized to CO. Second, biochar boosted Fe/S-reducing bacteria and thus compromised CdS dissolution, as affirmed by a reversal correlation between soil available Fe2+ and DTPA-Cd concentrations. A similar phenomenon occurred in Shewanella oneidensis MR-1-inoculated soils. This study provided new insights into the bioavailability of Cd and offered feasible measures to remediate Cd-contaminated paddy soils with biochars.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Disponibilidade Biológica , Carbono/metabolismo , Solo , Poluentes do Solo/análise , Carvão Vegetal/metabolismo , Água/análise , Ácido Pentético/metabolismo , Oryza/metabolismo
14.
Chemosphere ; 309(Pt 1): 136480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162515

RESUMO

Salinity affects over 33% of irrigated farmland globally. Developing a low-cost, safe, and effective material as a soil salinity mitigation option would be of significant importance. This study proposed to synthesize a hydrogel using liquefied biomass from sugarcane bagasse, polyvinyl alcohol, and sodium tetraborate decahydrate. The effectiveness of the produced hydrogel in mitigating soil salinity was evaluated based on an incubation experiment at two salinity levels (5 and 10 dS m-1). The experiment was conducted by mixing liquefied hydrogel with soil at four application rates (0, 1, 2, and 3% w/w) with three replications. Porewater and soil samples were tested for pH and electrical conductivity (EC). Soil samples were also analyzed for selected cations and anions. The results demonstrated that hydrogel significantly reduced porewater EC at both 5 and 10 dS m-1 salt solutions. In addition, hydrogel reduced Cl-, P, Ca2+, and Al3+ concentrations in soil samples with maximum reductions observed from 3% hydrogel treatment. However, pH of porewater showed a consistent increase with hydrogel application. The application of hydrogel also increased NH4-N at high salt level. Overall, hydrogel has shown promising results in reducing soil salinity and could potentially be used as a soil amendment for saline soils.


Assuntos
Saccharum , Solo , Salinidade , Celulose , Biomassa , Hidrogéis , Álcool de Polivinil , Cloreto de Sódio , Cátions
15.
Chemosphere ; 286(Pt 2): 131768, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426129

RESUMO

Novel green technologies for soil remediation have been focusing on altering soil properties and improving soil health. Hydrothermally-altered feldspar (HYP, HydroPotash), recently developed, is being related as both an efficient amendment to immobilize heavy metals in soils and a plant nutrients source, consisting in a promising technology for revegetation of contaminated sites. In order to evaluate the effectiveness of using HYP for phytostabilization programs, two different soils (Technosol and Oxisol) collected from a smelting site were amended with increasing doses of HYPs (HYP-1 and HYP-2): 15, 30, 60, and 120 Mg ha-1. For comparison, a control (soil without amendment) and a soil amended with zeolite (clinoptilolite) were also included as treatments. After 90 days of incubation, HYPs decreased up to 83.8 % of Cd availability and reduced exchangeable Al up to 100 %. HydroPotash increased pH, cation exchange capacity, and contents of potassium, calcium, and phosphorus, as well as microbial biomass carbon, and fluorescein diacetate hydrolysis of soils. Andropogon gayanus, Eucalyptus grandis, and Heterocondylus vitalbae started growing from the dose of 15 Mg ha-1 HYPs in the Oxisol and 60 Mg ha-1 HYPs in the Technosol. Principal component analysis indicates that plant shoot dry weight was negatively correlated with extractable Cd and Zn and positively with pH, CEC, and Ca content. Besides promoting plant growth, HYPs reduced heavy metals (Cd and Zn) absorption by plants, indicating that HYP has potential use as an amendment in phytostabilization programs.


Assuntos
Metais Pesados , Poluentes do Solo , Silicatos de Alumínio , Metais Pesados/análise , Metais Pesados/toxicidade , Compostos de Potássio , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
Biol Trace Elem Res ; 199(11): 4330-4341, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33409909

RESUMO

The combination of mineral multi-elements with chemometrics can effectively trace the geographical origin of tea (Camellia sinensis). However, the role of soil mineral multi-elements in discriminating the origin of tea was unknown. This study aimed to further validate whether the geographical origin of tea can be authenticated based on mineral multi-elements, the concentrations of which in tea leaves were significantly correlated with those in soil. Eighty-seven tea leaves samples and paired soils from Meitan and Fenggang (MTFG), Anshun, and Leishan in China were sampled, and 24 mineral elements were measured. The data were processed using one-way analysis of variance (ANOVA), Pearson correlation analysis, principal component analysis (PCA), and stepwise linear discriminant analysis (SLDA). Results indicated that tea and soil samples from different origins differed significantly (p < 0.05) in terms of most mineral multi-elemental concentrations. Conversely, the intra-regional differences of different cultivars of the same origin were relatively minor. Seventeen mineral elements in tea leaves were significantly correlated with those in soils. The SLDA model, based on the 17 aforementioned elements, produced a 98.85% accurate classification rate. In addition, the origin was also identified satisfactorily with 94.25% accuracy when considering the cultivar effect. In conclusion, the tea plant cultivars unaffected the accuracy of the discrimination rate. The geographical origin of tea could be authenticated based on the mineral multi-elements with significant correlation between tea leaves and soils. Soil mineral multi-elements played an important role in identifying the geographical origin of tea.


Assuntos
Camellia sinensis , China , Análise Discriminante , Minerais/análise , Folhas de Planta/química , Solo , Chá
17.
Chemosphere ; 262: 127906, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799154

RESUMO

Pulping and paper industries using non-woody feedstocks face the challenge of its notorious waste disposal problem. To resolve this problem, in this study, we evaluated a variety of properties of solid residues reclaimed from the effluents of both wheat straw ammonium sulfate and Kraft pulping processes as organic fertilizers. The results show that both residues from the ammonium sulfate (RAS) and Kraft pulping (RKP) processes possess desirable C/N ratios, appropriate nutritional compositions, and low levels of harmful heavy metals. The high solubilities (>35 g/L) of both residues allow their use for fertigation or foliar applications. The salt index (30-50) is within the range of commercial chemical fertilizers such as potassium sulfate (42.6) and magnum sulfate (44). The E3/E5 ratios of residues suggest that the residues have small molecular sizes, which are similar to fulvic acids. Overall, wheat straw pulping residues demonstrate the potential as the sustainable organic fertilizers and the beneficial soil amendments. This work has the potential to resolve the severer effluent disposal problem faced by the non-woody pulping and papermaking industries, open a door to effectively utilize residues as value-added byproducts, and lead to both environmental sustainability and economic benefits.


Assuntos
Fertilizantes , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados , Eliminação de Resíduos/métodos , Solo/química , Triticum
18.
Environ Sci Pollut Res Int ; 27(7): 7420-7429, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31884531

RESUMO

Biochar, a low-cost porous carbonaceous adsorbent, has low adsorption capacity for anion contaminants. The objective of this study was to improve biochar's ability to adsorb phosphorus (P) through polyethyleneimine (PEI) modification to form an amine-functionalized biochar. Biochars prepared by pyrolysis of bamboo biomass, before and after PEI modification, were characterized using the Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), elemental analysis, and batch sorption experiments. The effects of pH, coexisting anions, and ionic strength on P adsorption by PEI-modified biochar were also investigated. Results indicated that PEI was successfully grafted onto biochar which resulted an increase in surface amine group and in P adsorption. The peak of P adsorption occurred at pH of three and adsorption of P was decreased with increasing of ionic strength and when coexisting ions, such as HCO3-, SO42-, NO3-, and Cl-, were coexisted. The electrostatic interaction between P and surface functional groups of PEI-modified biochar served as the primary mechanism controlling the adsorption process. These results indicate that chemically functionalized biochar with amine groups can enhance P adsorption.


Assuntos
Carvão Vegetal/química , Fosfatos/química , Polietilenoimina , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/análise , Cinética , Polietilenoimina/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Environ Qual ; 49(5): 1408-1420, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016442

RESUMO

Despite the numerous benefits of biosolids, concerns over nutrient losses restrict the extent to which biosolids can be beneficially reused. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to investigate the potential impacts of co-applying biochar with biosolids or inorganic fertilizer on N and P leaching losses. A companion paper focuses on greenhouse gas responses. Nutrients were surface applied as biosolids (aerobically digested Class B) and inorganic fertilizer (ammonium nitrate and triple superphosphate) to an established perennial pasture at equivalent annual rates typical of field practices. Biochar was applied at an annual rate of 20 Mg ha-1 . Leachate N and P were monitored using passive-capillary drainage lysimeters. Results demonstrated significant temporal variability in leachate N and P, with larger pulses generally occurring during periods of high water table levels or after intensive rainfall. Inorganic fertilizer generally resulted in greater leachate N and P losses than biosolids. No differences in leachate N and P losses between biosolids and control were observed. Approximately 1% of applied N was lost via leaching from biosolids treatments vs. 16% for inorganic fertilizer. Regardless of the P source, negligible (0.1-0.2% of applied P), cumulative P leaching occurred during the 3-yr study. Biochar had no effect on P leaching but reduced N leaching from treatments receiving inorganic fertilizer by 60%. Prudent nutrient management is possible even on biosolids-amended Spodosols with high water tables.


Assuntos
Nitrogênio , Fósforo , Carvão Vegetal , Pradaria , Nutrientes , Solo
20.
J Environ Qual ; 49(5): 1421-1434, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016444

RESUMO

Land application of biochar reportedly provides many benefits, including reduced risk of nutrient transport, greenhouse gas (GHG) emission mitigation, and increased soil C storage, but additional field validation is needed. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to evaluate the impacts of biochar co-applied with various N and P sources on GHG fluxes from a subtropical grassland. Nutrients (inorganic fertilizer and aerobically digested Class B biosolids) were surface applied at a rate of 160 kg plant available N ha-1  yr-1 with or without biochar (applied at 20 Mg ha-1 ). Greenhouse gas (CO2 , CH4 , and N2 O) fluxes were assessed using static chambers and varied significantly, both temporally and with treatments. Greenhouse gas fluxes ranged from 1,247 to 23,160, -0.7 to 42, and -1.4 to 376 mg m-2 d-1 for CO2 , N2 O, and CH4 , respectively. Results of the 3-yr field study demonstrated strong seasonal variability associated with GHG emissions. Nutrient source had no effect on soil CO2 and CH4 emissions, but annual and cumulative (3-yr) N2 O emissions increased with biosolids (8 kg N2 O ha-1  yr-1 ) compared with inorganic fertilizer (5 kg N2 O ha-1  yr-1 ) application. Data suggested that environmental conditions played a more important role on GHG fluxes than nutrient additions. Biochar reduced CO2 emissions modestly (<9%) but had no effects on N2 O and CH4 emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Carvão Vegetal , Pradaria , Metano/análise , Óxido Nitroso/análise , Nutrientes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA