Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(27): 13903-13911, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920295

RESUMO

Pickering double emulsions exhibit higher stability and biocompatibility compared with surfactant-stabilized double emulsions. However, tailored synthesis of particle stabilizers with appropriate wettability is time consuming and complicated and usually limits their large-scale adoption. Using binary stabilizers may be a simple and scalable strategy for Pickering double emulsion formation. Herein, commercially available hydrophobic silica nanoparticles (SNPs) and sodium alginate (SA) as binary stabilizers are used to prepare O/W/O Pickering double emulsions in one-step emulsification. The influence of system composition on double emulsion preparation is identified by optical microscopy, confocal laser scanning microscopy, and interfacial tension and water contact angle analyses. The formation of the O/W/O Pickering double emulsion depends critically on the aqueous phase viscosity and occurrence of emulsion inversion. Both hydrophobic SNPs and SA adsorb at the droplet surface to provide a steric barrier, while SA also reduces interfacial tension and increases aqueous phase viscosity, giving double emulsion long-term stability. Their microstructure and stability are controlled by adjusting the SA concentration, water-oil volume ratio, concentration and wettability of the particle stabilizer, and oil type. As a demonstration, the middle layer of the as-prepared O/W/O Pickering double emulsions can be cross-linked in situ with calcium ions to produce calcium alginate porous microspheres. We believe that our strategy for double emulsion formation holds great potential for practical applications in food, cosmetics, or pharmaceuticals.

2.
Macromol Rapid Commun ; : e2400289, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073047

RESUMO

Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of ß-carotene.

3.
Talanta ; 273: 125880, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484499

RESUMO

In this study, we established a versatile and simple magnetic-assisted microfluidic method for fast bacterial detection. Quantum dots (QDs) were loaded onto magnetic beads (MBs) to construct performance enhanced on-chip capture of bacteria. Escherichia coli (E. coli), as a model bacterium was studied. CdSe QDs were deposited onto the surface of Fe3O4 MBs through layer-by-layer self-assembly to enhance the loading of antibodies (Abs). MBs functionalized with anti-E. coli antibody molecules in a micropillar-based microfluidic chip were utilized to capture E. coli, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used for characterization of captured bacteria. This method was found capable of specifically isolating E. coli within the range of 1.0 to 1.0 × 109 CFU/mL, having a detection limit (LOD) of 10 CFU/mL. The average similarity score among mass spectra for the bacterial capture obtained in independent experiments is calculated as 0.97 ± 0.01 (n = 3), which shows this work's excellent reproducibility for bacterial capture. Bacterial growth on ready-to-eat (RTE) foods during its time of storage was successfully monitored. The present protocol has promising potential for microbial control and pathogen detection in the food industry.


Assuntos
Escherichia coli , Pontos Quânticos , Reprodutibilidade dos Testes , Bactérias , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenômenos Magnéticos
4.
Nanoscale Horiz ; 9(4): 536-543, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390971

RESUMO

The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity. Moreover, the commonly used materials often exhibit poor biocompatibility and possess certain cytotoxicity. To address this issue, we developed a gentle and efficient method based on Pickering emulsion templates to synthesize protein-based microparticles using zein as the matrix material. These microparticles have high stability and can be tailored to efficiently encapsulate biomolecules while preserving their activity. Moreover, the zein-based microparticles can be triggered to release biomolecules in tumor cells under high glutathione levels, demonstrating excellent responsiveness, biocompatibility, and low cytotoxicity. Additionally, when loaded with GOx, these protein-based microparticles effectively deprive tumor cells of nutrients and induce apoptosis by generating high levels of H2O2, thereby exhibiting enhanced anticancer properties.


Assuntos
Zeína , Emulsões , Peróxido de Hidrogênio , Endocitose , Glutationa , Glucose Oxidase
5.
Nanoscale Horiz ; 9(6): 1052, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38656282

RESUMO

Correction for 'Pickering emulsion templated proteinaceous microparticles as glutathione-responsive carriers for endocytosis in tumor cells' by Weijie Jiang et al., Nanoscale Horiz., 2024, 9, 536-543, https://doi.org/10.1039/D3NH00551H.

6.
Gels ; 10(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786252

RESUMO

Herein, the starch nanocrystal/tannic acid (ST) complex particles, which were prepared based on the hydrogen bond between starch nanocrystal (SNC) and tannic acid (TA), were successfully used to stabilize the HIPPE gels. The optimal TA concentration of the ST complex particles resulted in better water dispersibility, surface wettability, and interfacial activity as compared to SNC. The hydrogen bond responsible for the formation of ST complex particles and subsequent stable emulsions was demonstrated by varying the pH and ionic strength of the aqueous phase. Notably, the HIPPE gels stabilized via the ST complex particles can maintain long-term stability for up to three months. The HIPPEs stabilized via the ST complex particles all displayed gel-like features and had smaller droplets and denser droplet networks than the SNC-stabilized HIPPEs. The rheological behavior of HIPPE gels stabilized via the ST complex particles can be readily changed by tuning the mass ratio of SNC and TA as well as pH. Finally, the prepared HIPPE gels used to effectively protect encapsulated ß-carotene against high temperatures and ultraviolet radiation and its controllable release at room temperature were demonstrated. It is anticipated that the aforementioned findings will provide new perspectives on the preparation of Pickering emulsion for delivery systems.

7.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475330

RESUMO

Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA