Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39041196

RESUMO

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.


Assuntos
Cianobactérias , Fotossíntese , Fotossíntese/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Biológica , Filogenia , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular
2.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
3.
Plant Biotechnol J ; 22(6): 1757-1772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288521

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.


Assuntos
Cromossomos de Plantas , Diploide , Genoma de Planta , Medicago sativa , Medicago sativa/genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Variação Genética
4.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428703

RESUMO

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cell Biochem ; 124(7): 1012-1022, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269482

RESUMO

In this study, we investigated the effect of sweroside (SOS) on hepatic steatosis in mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of nonalcohol fatty liver disease (NAFLD) to explore the effect of SOS on hepatic steatosis in NAFLD mice. In in vitro experiments, primary mouse hepatocytes were treated with palmitic acid and SOS, and the protective effects of SOS on inflammation, lipogenesis, and fat deposition were analyzed. Autophagy-related protein levels and their related signaling pathways were evaluated in both in vivo and in vitro experiments. The results demonstrated that SOS decreased the high-fat-induced intrahepatic lipid content both in vivo and in vitro. The autophagy level in the liver was decreased in NAFLD mice but was reactivated following SOS intervention. SOS intervention was found to partially activate autophagy via the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Consequently, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of SOS intervention on hepatic steatosis were diminished. These results indicate that SOS intervention attenuates hepatic steatosis by promoting autophagy in the liver of NAFLD mice, in part by activating the AMPK/mTOR signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Metabolismo dos Lipídeos , Dieta Hiperlipídica , Mamíferos
6.
J Cell Biochem ; 124(11): 1749-1763, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796169

RESUMO

In this study, we investigated the effects of sweroside on podocyte injury in diabetic nephropathy (DN) mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of DN to explore the effects of sweroside on proteinuria and podocyte injury in DN mice. In in vitro experiments, conditionally immortalized mouse podocytes were treated with high glucose and sweroside, and the protective effects of sweroside on podocyte injury were analyzed. In vitro, Akt/BAD pathways were detected using gene siRNA silencing assays and found to be involved in the protective roles of sweroside in high glucose-mediated podocyte injury. In vivo, sweroside significantly decreased albuminuria in DN mice (p < 0.01). periodic acid-Schiff staining showed that sweroside alleviated the glomerular volume and mesangium expansion in DN mice. Consistently, western blot and reverse transcription-polymerase chain reaction analyses showed that the profibrotic molecule expression in the glomeruli declined in sweroside-treated DN mice. Immunofluorescent results showed that sweroside preserved nephrin and podocin expression, and transmission electron microscopy showed that sweroside attenuated podocyte injury. In DN mice, sweroside decreased podocyte apoptosis, and increased nephrin, podocin expression and decreased desmin and HIF1α expression. These results confirmed that sweroside ameliorated albuminuria, glomerulomegaly, and glomerulosclerosis in these mice. Experiments in vitro revealed that sweroside improved HG-induced podocyte injury and apoptosis. Sweroside stimulated activation of the Akt/BAD pathway and upregulated Bcl-2-associated death promoter (BAD) and p-Akt. Overall, sweroside protected podocytes from injury and prevented the progression of DN, providing a novel strategy for the treatment of DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Albuminúria/tratamento farmacológico , Albuminúria/metabolismo , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Apoptose
7.
Plant Physiol ; 190(1): 340-351, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35789395

RESUMO

The genomes of Gramineae plants have been preferentially sequenced owing to their economic value. These genomes are often quite complex, for example harboring many duplicated genes, and are the main source of genetic innovation and often the result of recurrent polyploidization. Deciphering these complex genome structures and linking duplicated genes to specific polyploidization events are important for understanding the biology and evolution of plants. However, efforts have been hampered by the complexity of analyzing these genomes. Here, we analyzed 29 well-assembled and up-to-date Gramineae genome sequences by hierarchically relating duplicated genes in collinear regions to specific polyploidization or speciation events. We separated duplicated genes produced by each event, established lists of paralogous and orthologous genes, and ultimately constructed an online database, GGDB (http://www.grassgenome.com/). Homologous gene lists from each plant and between plants can be displayed, searched, and downloaded from the database. Interactive comparison tools are deployed to demonstrate homology among user-selected plants and to draw genome-scale or local alignment figures and gene-based phylogenetic trees corrected by exploiting gene collinearity. Using these tools and figures, users can easily detect structural changes in genomes and explore the effects of paleo-polyploidy on crop genome structure and function. The GGDB will provide a useful platform for improving our understanding of genome changes and functional innovation in Gramineae plants.


Assuntos
Genoma de Planta , Poliploidia , Evolução Molecular , Duplicação Gênica , Genes Duplicados , Genoma de Planta/genética , Filogenia , Plantas/genética , Poaceae/genética
8.
Plant Physiol ; 190(4): 2430-2448, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36053177

RESUMO

Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.


Assuntos
Cucurbitaceae , Magnoliopsida , Genoma de Planta/genética , Evolução Molecular , Filogenia , Magnoliopsida/genética , Cucurbitaceae/genética , Poliploidia
9.
Genomics ; 114(6): 110483, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115504

RESUMO

The gut microbiota plays a crucial role in coronary heart disease (CHD). However, only a few studies focusing on the relationship between gut microbiota and CHD in ethnic populations are available. Here, we employed shotgun sequencing of the gut metagenome to analyze the taxonomic composition and functional annotation of the gut microbiota of 14 CHD patients, 13 patients with non-stenosis coronary heart disease (NCHD), and 18 healthy controls (HT) in Tibetan subjects. We found that the α-diversity of the gut microbiota was not significantly different among the three groups., whereas ß-diversity was significantly altered in the CHD group compared with HT. Based on the receiver operating characteristic curve (ROC) analysis, the relative abundance of Proteobacteria species effectively distinguished patients with CHD from the control group. Most of the enriched species belonged to Proteobacteria. The pathways that contributed the most to the differences between groups were amino acid metabolism-related pathways, especially lysine biosynthesis. The enzymes of the lysine biosynthesis pathway, including K01714 and K00821, were significantly decreased in the CHD group. Our findings increase the understanding of the association between CHD pathogenesis and gut microbiota in the Tibetan population, thus paving the way for the development of improved diagnostic methods and treatments for Tibetan patients with CHD.


Assuntos
Doença das Coronárias , Lisina , Humanos
10.
Cancer Immunol Immunother ; 71(7): 1645-1654, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34767045

RESUMO

CD8+CD103+ tissue-resident memory T cells (TRMs) are involved in tumor immune response and linked to favorable clinical outcome in human cancer. However, the distribution, phenotype, functional properties and clinical relevance of these cells in gastric cancer (GC) remain elusive. Here, our data show that, in comparison to non-tumor tissues, the percentages of CD8+CD103+ TRMs in tumors are significantly decreased. Most tumor-infiltrating CD8+CD103+ TRMs are CD45RA-CCR7- effector-memory cells with higher PD-1 and 4-1BB expression than those from non-tumor tissues. Further, tumor-infiltrating CD8+CD103+ TRMs show impaired cytolytic capacity due to decreased granzyme B and perforin expression. Moreover, ex vivo PD-1 blockade could restore the cytolytic capacity of tumor-infiltrating CD8+CD103+ TRMs, and such anti-PD-1-mediated reinvigoration of CD8+CD103+ TRMs could be further enhanced by 4-1BB co-stimulation. Finally, lower levels of Tumor-infiltrating CD8+CD103+ TRMs are positively correlated with GC progression and poor patients' survival. Our data suggest that restoring CD8+CD103+ TRM function by combining PD-1 blockade and 4-1BB co-stimulation may be a promising strategy for treating GC.


Assuntos
Neoplasias Gástricas , Linfócitos T CD8-Positivos , Humanos , Memória Imunológica , Cadeias alfa de Integrinas/metabolismo , Linfócitos do Interstício Tumoral , Células T de Memória , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/metabolismo
11.
Neurocrit Care ; 36(2): 395-403, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313936

RESUMO

BACKGROUND: Studies of the impact of increased hemoglobin on spontaneous intracerebral hemorrhage (ICH) are limited. The present study aimed to explore the effect of increased hemoglobin on ICH. METHODS: A retrospective single-center study using medical records from a database processed by univariate and multivariate analyses was performed in the People's Hospital of Tibet Autonomous Region in Lhasa, Tibet, China. RESULTS: The mean hemoglobin level in 211 patients with ICH was 165.03 ± 34.12 g/l, and a median hematoma volume was 18.5 ml. Eighty-eight (41.7%) patients had large hematomas (supratentorial hematoma ≥ 30 ml; infratentorial hematoma ≥ 10 ml). No differences in ICH risk factors between the groups with different hemoglobin levels were detected. Increased hemoglobin was independently associated with large hematomas [odds ratio (OR) 1.013, P = 0.023]. Increased hemoglobin was independently associated with ICH with subarachnoid hemorrhage (OR 1.014, P = 0.016), which was more pronounced in men (OR 1.027, P = 0.002). Increased hemoglobin was independently associated with basal ganglia hemorrhage and lobar hemorrhage in men (OR 0.986, P = 0.022; OR 1.013, P = 0.044, respectively) but not in women (P > 0.1). CONCLUSIONS: Increased hemoglobin was independently associated with large hemorrhage volume. Increased hemoglobin was independently associated with lobar hemorrhage in men and ICH with subarachnoid hemorrhage, which was more pronounced in men. Additional studies are needed to confirm our findings and explore potential mechanisms.


Assuntos
Hemorragia Subaracnóidea , Hemorragia Cerebral , Feminino , Hematoma/epidemiologia , Hemoglobinas , Humanos , Masculino , Estudos Retrospectivos
12.
BMC Genomics ; 22(1): 460, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147070

RESUMO

BACKGROUND: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION: Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.


Assuntos
Oryza , Idoso de 80 Anos ou mais , Evolução Molecular , Duplicação Gênica , Genes Duplicados , Genoma de Planta , Humanos , Oryza/genética , Filogenia
13.
J Environ Sci (China) ; 110: 73-83, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593196

RESUMO

Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of "red water" and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid "red water".


Assuntos
Água Potável , Ferro , Cloro , Corrosão , Qualidade da Água , Abastecimento de Água
14.
BMC Plant Biol ; 20(1): 52, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005164

RESUMO

BACKGROUND: Carrot (Daucus carota subsp. carota L.) is an important root crop with an available high-quality genome. The carrot genome is thought to have undergone recursive paleo-polyploidization, but the extent, occurrences, and nature of these events are not clearly defined. RESULTS: Using a previously published comparative genomics pipeline, we reanalysed the carrot genome and characterized genomic fractionation, as well as gene loss and retention, after each of the two tetraploidization events and inferred a dominant and sensitive subgenome for each event. In particular, we found strong evidence of two sequential tetraploidization events, with one (Dc-α) approximately 46-52 million years ago (Mya) and the other (Dc-ß) approximately 77-87 Mya, both likely allotetraploidization in nature. The Dc-ß event was likely common to all Apiales plants, occurring around the divergence of Apiales-Bruniales and after the divergence of Apiales-Asterales, likely playing an important role in the derivation and divergence of Apiales species. Furthermore, we found that rounds of polyploidy events contributed to the expansion of gene families responsible for plastidial methylerythritol phosphate (MEP), the precursor of carotenoid accumulation, and shaped underlying regulatory pathways. The alignment of orthologous and paralogous genes related to different events of polyploidization and speciation constitutes a comparative genomics platform for studying Apiales, Asterales, and many other related species. CONCLUSIONS: Hierarchical inference of homology revealed two tetraploidization events that shaped the carrot genome, which likely contributed to the successful establishment of Apiales plants and the expansion of MEP, upstream of the carotenoid accumulation pathway.


Assuntos
Daucus carota/genética , Genoma de Planta , Tetraploidia , Evolução Biológica
15.
Plant Biotechnol J ; 18(6): 1444-1456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31799788

RESUMO

Coriander (Coriandrum sativum L. 2n = 2x = 22), a plant from the Apiaceae family, also called cilantro or Chinese parsley, is a globally important crop used as vegetable, spice, fragrance and traditional medicine. Here, we report a high-quality assembly and analysis of its genome sequence, anchored to 11 chromosomes, with total length of 2118.68 Mb and N50 scaffold length of 160.99 Mb. We found that two whole-genome duplication events, respectively, dated to ~45-52 and ~54-61 million years ago, were shared by the Apiaceae family after their split from lettuce. Unbalanced gene loss and expression are observed between duplicated copies produced by these two events. Gene retention, expression, metabolomics and comparative genomic analyses of terpene synthase (TPS) gene family, involved in terpenoid biosynthesis pathway contributing to coriander's special flavour, revealed that tandem duplication contributed to coriander TPS gene family expansion, especially compared to their carrot counterparts. Notably, a TPS gene highly expressed in all 4 tissues and 3 development stages studied is likely a major-effect gene encoding linalool synthase and myrcene synthase. The present genome sequencing, transcriptome, metabolome and comparative genomic efforts provide valuable insights into the genome evolution and spice trait biology of Apiaceae and other related plants, and facilitated further research into important gene functions and crop improvement.


Assuntos
Coriandrum , Mapeamento Cromossômico , Emoções , Genoma de Planta , Plantas , Transcriptoma
16.
Plant Physiol ; 179(1): 209-219, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385647

RESUMO

The durian (Durio zibethinus) genome has recently become available, and analysis of this genome reveals two paleopolyploidization events previously inferred as shared with cotton (Gossypium spp.). Here, we reanalyzed the durian genome in comparison with other well-characterized genomes. We found that durian and cotton were actually affected by different polyploidization events: hexaploidization in durian ∼19-21 million years ago (mya) and decaploidization in cotton ∼13-14 mya. Previous interpretations of shared polyploidization events may have resulted from the elevated evolutionary rates in cotton genes due to the decaploidization and insufficient consideration of the complexity of plant genomes. The decaploidization elevated evolutionary rates of cotton genes by ∼64% compared to durian and explained a previous ∼4-fold over dating of the event. In contrast, the hexaploidization in durian did not prominently elevate gene evolutionary rates, likely due to its long generation time. Moreover, divergent evolutionary rates probably explain 98.4% of reconstructed phylogenetic trees of homologous genes being incongruent with expected topology. The findings provide further insight into the roles played by polypoidization in the evolution of genomes and genes, and they suggest revisiting existing reconstructed phylogenetic trees.


Assuntos
Bombacaceae/genética , Genoma de Planta , Poliploidia , Evolução Molecular , Filogenia
17.
BMC Genomics ; 20(1): 180, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845910

RESUMO

BACKGROUND: After polyploidization, a genome may experience large-scale genome-repatterning, featuring wide-spread DNA rearrangement and loss, and often chromosome number reduction. Grasses share a common tetraploidization, after which the originally doubled chromosome numbers reduced to different chromosome numbers among them. A telomere-centric reduction model was proposed previously to explain chromosome number reduction. With Brachpodium as an intermediate linking different major lineages of grasses and a model plant of the Pooideae plants, we wonder whether it mediated the evolution from ancestral grass karyotype to Triticeae karyotype. RESULTS: By inferring the homology among Triticeae, rice, and Brachpodium chromosomes, we reconstructed the evolutionary trajectories of the Triticeae chromosomes. By performing comparative genomics analysis with rice as a reference, we reconstructed the evolutionary trajectories of Pooideae plants, including Ae. Tauschii (2n = 14, DD), barley (2n = 14), Triticum turgidum (2n = 4x = 28, AABB), and Brachypodium (2n = 10). Their extant Pooidea and Brachypodium chromosomes were independently produced after sequential nested chromosome fusions in the last tens of millions of years, respectively, after their split from rice. More frequently than would be expected by chance, in Brachypodium, the 'invading' and 'invaded' chromosomes are homoeologs, originating from duplication of a common ancestral chromosome, that is, with more extensive DNA-level correspondence to one another than random chromosomes, nested chromosome fusion events between homoeologs account for three of seven cases in Brachypodium (P-value≈0.00078). However, this phenomenon was not observed during the formation of other Pooideae chromosomes. CONCLUSIONS: Notably, we found that the Brachypodium chromosomes formed through exclusively distinctive trajectories from those of Pooideae plants, and were well explained by the telomere-centric model. Our work will contribute to understanding the structural and functional innovation of chromosomes in different Pooideae lineages and beyond.


Assuntos
Brachypodium/genética , Cromossomos de Plantas/genética , Evolução Molecular , Genômica , Cariótipo
18.
Mol Biol Evol ; 35(1): 16-26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029269

RESUMO

Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90-102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.


Assuntos
Cucurbitaceae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Taxa de Mutação , Filogenia , Poliploidia , Tetraploidia
19.
BMC Genomics ; 19(1): 665, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208846

RESUMO

BACKGROUND: Trihelix transcription factors (TTF) play important roles in plant growth and response to adversity stress. Until now, genome-wide identification and analysis of this gene family in foxtail millet has not been available. Here, we identified TTF genes in the foxtail millet and its grass relatives, and characterized their functional domains. RESULTS: As to sequence divergence, TTF genes were previously divided into five subfamilies, I-V. We found that Trihelix family members in foxtail millet and other grasses mostly preserved their ancestral chromosomal locations during millions of years' evolution. Six amino acid sites of the SIP1 subfamily possibly were likely subjected to significant positive selection. Highest expression level was observed in the spica, with the SIP1 subfamily having highest expression level. As to the origination and expansion of the gene family, notably we showed that a subgroup of subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Overtime, starting from the subfamily O, certain genes evolved to form subfamilies III and I, and later from subfamily I to develop subfamilies II and V. The oldest gene, Si1g016284, has the most structural changes, and a high expression in different tissues. What's more interesting is that it may have bridge the interaction with different proteins. CONCLUSIONS: By performing phylogenetic analysis using non-plant species, notably we showed that a subgroup of subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Starting from the subfamily O, certain genes evolved to form other subfamilies. Our work will contribute to understanding the structural and functional innovation of Trihelix transcription factor, and the evolutionary trajectory.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Genômica , Mapeamento de Interação de Proteínas , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Seleção Genética , Alinhamento de Sequência , Fatores de Transcrição/genética
20.
Plant Physiol ; 174(1): 284-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28325848

RESUMO

Mainly due to their economic importance, genomes of 10 legumes, including soybean (Glycine max), wild peanut (Arachis duranensis and Arachis ipaensis), and barrel medic (Medicago truncatula), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape (Vitis vinifera) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org).


Assuntos
Fabaceae/genética , Genoma de Planta/genética , Genômica/métodos , Filogenia , Mapeamento Cromossômico , Evolução Molecular , Fabaceae/classificação , Duplicação Gênica , Genes de Plantas/genética , Modelos Genéticos , Poliploidia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA