Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Addict Biol ; 27(3): e13175, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470558

RESUMO

Paternal methamphetamine (METH) exposure results in long-term behavioural deficits in the sub-generations with a sex difference. Here, we aim to investigate the sex-specific neurobehavioural outcomes in the first-generation offspring mice (F1 mice) paternally exposed to METH prior to conception and explore the underlying brain mechanisms. We found that paternal METH exposure increased anxiety-like behaviours and spatial memory deficits only in female F1 mice and caused depression-like behaviours in the offspring without sex-specific differences. In parallel, METH-sired F1 mice exhibited sex-specific brain activity pattern in response to mild stimulus (in water at room temperature for 3 min). Overall, paternal METH exposure caused a blunting phenomenon of prelimbic cortex (PrL), infralimbic cortex (IL) and nucleus accumbens (NAc) core in both male and female F1 mice, as indicated by the decreased c-Fos levels under mild stimulus. Of note, the activity of central nucleus of the amygdala (CeA) by mild stimulus was triggered in male but suppressed in female F1 mice, whereas the neurons of orbitofrontal cortex (OFC), cingulate cortex (Cg1), NAc shell, medial habenula (mHb), dorsal hippocampal CA1 (dCA1) and ventral hippocampal CA1 (vCA1) were only blunted in female F1 mice. Taken together, the distinct brain stimulation patterns between male and female F1 mice might contribute to the sex-specific behavioural outcomes by paternal METH exposure, which indicate that sex differences should be considered in the treatment of offspring paternally exposed drugs.


Assuntos
Metanfetamina , Animais , Encéfalo , Feminino , Hipocampo , Masculino , Metanfetamina/farmacologia , Camundongos , Núcleo Accumbens , Córtex Pré-Frontal
2.
Glia ; 69(10): 2404-2418, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110044

RESUMO

Methamphetamine (METH) is a common abused drug. METH-triggered glutamate (Glu) levels in dorsal CA1 (dCA1) could partially explain the etiology of METH-caused abnormal memory, but the synaptic mechanism remains unclear. Here, we found that METH withdrawal disrupted spatial memory in mice, accompanied by the increases in Glu levels and postsynaptic neuronal activities at dCA1 synapses. METH withdrawal weakened the capacity of Glu clearance in astrocytes, as indicated by increasing the A1-like astrocytes and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), decreasing the Glu transporter 1(GLT-1, also known as EAAT2 or SLC1A2), Glu-aspartate-transporter (GLAST also known as EAAT1 or SLC1A3) and astrocytic glutamine synthase (GS), but failed to affect the presynaptic Glu release from dCA3 within dCA1. Moreover, we identified that in vitro A1-like astrocytes exhibited an increased STAT3 activation and the impaired capacity of Glu clearance. Most importantly, selective knockdown of astrocytic STAT3 in vivo in dCA1 restored the astrocytic capacity of Glu clearance, normalized Glu levels at dCA1 synapses, and finally rescued METH withdrawal-disrupted spatial memory in mice. Thus, astrocytic Glu clearance system, especially STAT3, serves as a novel target for future therapies against METH neurotoxicity.


Assuntos
Astrócitos , Metanfetamina , Animais , Astrócitos/fisiologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico , Metanfetamina/toxicidade , Camundongos , Fator de Transcrição STAT3/genética , Memória Espacial
3.
Psychopharmacology (Berl) ; 241(5): 897-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38092953

RESUMO

RATIONALE: Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear. OBJECTIVES: The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1). METHODS: METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR. RESULTS: METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC. CONCLUSIONS: Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.

4.
Transl Psychiatry ; 13(1): 324, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857642

RESUMO

Paternal abuse of drugs, such as methamphetamine (METH), elevates the risk of developing addiction in subsequent generations, however, its underlying molecular mechanism remains poorly understood. Male adult mice (F0) were exposed to METH for 30 days, followed by mating with naïve female mice to create the first-generation mice (F1). When growing to adulthood, F1 were subjected to conditioned place preference (CPP) test. Subthreshold dose of METH (sd-METH), insufficient to induce CPP normally, were used in F1. Selective antagonist (betaxolol) for ß1-adrenergic receptor (ADRB1) or its knocking-down virus were administrated into mPFC to regulate ADRB1 function and expression on CaMKII-positive neurons. METH-sired male F1 acquired sd-METH-induced CPP, indicating that paternal METH exposure induce higher sensitivity to METH in male F1. Compared with saline (SAL)-sired male F1, CaMKII-positive neuronal activity was normal without sd-METH, but strongly evoked after sd-METH treatment in METH-sired male F1 during adulthood. METH-sired male F1 had higher ADRB1 levels without sd-METH, which was kept at higher levels after sd-METH treatment in mPFC. Either inhibiting ADRB1 function with betaxolol, or knocking-down ADRB1 level on CaMKII-positive neurons (ADRB1CaMKII) with virus transfection efficiently suppressed sd-METH -evoked mPFC activation, and ultimately blocked sd-METH-induced CPP in METH-sired male F1. In the process, the p-ERK1/2 and ΔFosB may be potential subsequent signals of mPFC ADRB1CaMKII. The mPFC ADRB1CaMKII mediates paternal METH exposure-induced higher sensitivity to drug addiction in male offspring, raising a promising pharmacological target for predicting or treating transgenerational addiction.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Masculino , Feminino , Camundongos , Animais , Metanfetamina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Betaxolol , Fosforilação , Estimulantes do Sistema Nervoso Central/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA